白夜書房 (Maison d’édition)
2016年12月23日 (Date de sortie)
Magazine (Format)
アイドル・女優の記事が載っている隔月刊の雑誌。
僕が読んでおもしろかったのは齋藤飛鳥のグラビア&インタビュー、欅坂46の「二人セゾン」、「大人は信じてくれない」のMV制作ドキュメントとかかな。
齋藤飛鳥の記事ではキャッチコピーがかっこよかった。
この世で最も天界に近いアイドル、ついに覚醒の刻。
(p.3)
高すぎる空、不適合な私。
飛べない天使の告白
(p.52)
とかとか。
編集者の人はよく考えるものだ。
それにしても齋藤飛鳥はかわいいな~
写真がよかったです。
Mais、こんなにかわいいのに暗くて自分に自信がないなんて…
そういう性格なのかと言ってしまえばそれまでだが、性格も変わっていくものだからな。
そのうち自信がついて自己評価が高くなってくればいいね。
Le reste、自分を認めていないってことは努力家で目標が高いってこともあるのだろうが、がんばりすぎると体を壊したりもするから、たまには自分を認めて、うまくバランスをとって生きていってもらいたいものだ。
欅坂46のMVドキュメントでは制作陣のインタビューが興味深かった。
映像監督の新宮良平氏と池田一真氏、振付のTAKAHIRO氏のインタビューが載っていたのだ。
芸術作品にはいろんな意味が込められているんだな。
et、制作陣からの平手友梨奈の評価が高かった。
やっぱり平手友梨奈はすごいみたいだ。
Articles connexes
- 1 partie12 2 Toshikazu Sunada (Rédigé par) Nombre de publications de recherche (Maison d’édition) 2003Le 1er avril. (Date de sortie) Couverture rigide (Format) 今日で2次関数編がラストだ。 問36からやっていこう。 ヒントにあるように以下のようにする。 $$\begin{eqnarray*}f\left( x \right) &=&{ x }^{ 2 }-ax+b-\left( -{ x }^{ 2 }-bx+a \right) \\ &=&2{ x }^{ 2 }-\gauche( a-b \right) x-\left( a-b \right) \end{eqnarray*}$$ そして\(a-b=t\left( t\neq 0 \right) \)Et garder、\(f\left( x \right) \)について\(f\left( x \right) <0\)を満たす実数\(x\)が必ず存在するので、2次関数の頂点の\(y\)座標は\(0\)より小さい。 よって\(T>0\)、\(T<-8\)となる。 あとはヒントにあるように放物線\(y=f\left( x \right) \)の軸は直線\(x=\frac { T }{ 4 } \)なのでこの軸に最も近い整数を考えればいい。 僕はここから悩んでしまって、次のようにした。 \(\frac { T }{ 4 } \)に最も近い整数は、 $$t=4k\left(kは0,-1,-2を除く整数 \right)のときはn=k$$ $$4k<t\le 4k+2\left(kは-1,-2を除く整数 \right)のときはn=k$$ $$4k+2<T< 4\gauche( k+1 \right) \gauche(kは-1,-2を除く整数 \right)のときはn=k+1$$ そして\(x=n\)を\(f\left( x \right)\)に代入すると\(f\left( x \right)\)は\(t /)の1次式と見ることができる。 あとは考えている\(t /)の範囲において、これまた\(k\)の範囲についても考慮しながら最大値の議論をしていくと、\(f\left( n \right) \le -2\)または\(f\left( n \right) < 0\)と分かり、題意を満たす整数\(n\)が必ず存在すると分かった。 解くのにかなり時間がかかってしまった… 実際の試験だったら時間がかかりすぎてしまって、僕は明らかにこの問題を解けていないだろう。 toutefois、正答例ではもっと簡単に解いていた。 $$T<-8のときf\left( -2 \right) =8+t<0$$…
- Tableau math 1 part5 [chapitre équations et inéquations] Toshikazu Sunada (Rédigé par) Nombre de publications de recherche (Maison d’édition) 2003Le 1er avril. (Date de sortie) Couverture rigide (Format) 今日も進めていくぞ~。 問15からだ。 (1)は解の公式を利用して解を求め、誘導にしたがって因数分解すればいい。 (2)は\(P\left( x,y \right) =0\)を、\(x\)についての2次方程式と考えて解の公式で解く。 そして\(x=f\left( y \right) \)、\(x=g\left( y \right) \)とすると、\(P\left( x,y \right) =\left\{ x-f\left( y \right) \right\} \left\{ x-g\left( y \right) \right\} \)と因数分解できる。 Maintenant、\(P\left( x,y \right)\)が\(x\)、\(y\)についての1次式の積として表されるので、解の公式で求められた解の\(\sqrt { } \)内の\(y\)についての2次式が、\(y\)の1次式の平方数(2乗)の形にならないといけない。 このとき\(y\)についての2次式は重解をもち、判別式\(D=0\)être。 これから\(k\)が求まる。 最初は\(P\left( x,y \right) =0\)を\(x\)についての2次式とみて解を求め、次は出てきた解の\(y\)についての2次式に注目して判別式を利用するというおもしろい問題だった。 あと気になったのは $$x=\frac { -\gauche( 4+y \right) \pm \sqrt { { \gauche( 3y+2 \right) }^{ 2 } } }{ 2 } ,\frac { -\gauche( 4+y \right) \pm \sqrt { { \gauche( 3y-2 \right) }^{ 2 } } }{ 2 } $$ となったときの根号(\(\sqrt { } \))部分の計算についてだ。 通常は絶対値を付けて\(\gauche| 3y+2 \right| \)、\(\gauche| 3y-2 \right| \)とする。…
- J’ai、Belle ? Popup (Rédigé par)Wikipedia (L’encyclopédie libre)1978En décembre (Jour d’éléphant KIA)Mythe (Classement) 風説データベース東京謎伝説うわごとのとなり発言小町国立国会図書館 Yahoo!JAPAN 知恵袋 噂の激震地かぁ。Masque de mode。