東 浩紀 (Rédigé par)
Kodansha Ltd., Tokyo (Maison d’édition) / Kodansha Gendai Shinsho
2001年11月20日 (Date de sortie)
Nouveau livre (Format)
オタクたちの文化や行動から日本のポストモダンを分析したような本。
ポストモダンは1960年代、1970年代以降の文化的世界のことで、大きな物語の凋落が起きているみたい。
シミュラークルが宿る表層=小さな物語と、データベースが宿る深層=大きな非物語の二層構造になっているのがポストモダンのモデルだと著者は主張する。
メディアミックス、萌え要素、キャラ萌えもこの観点から説明できるらしい。
Aussi、動物化というものも起こっていて、シミュラークルの水準での動物性と、データベースの水準での人間性が解離的に共存しているという。
なるほどな~
Le reste、機動戦艦ナデシコとかセイバーマリオネットJとか、この世の果てで恋を唄う少女YU-NOの話題がでてきて、懐かしいと思いました。
僕はほぼ未見だが、当時話題になっていたから名前は知っている…
Articles connexes
- Tableau partie Math A 2 [celui de] Yanagawa, Takaaki (Rédigé par)Nombre de publications de recherche (Maison d’édition)2003Le 1er avril. (Date de sortie)Couverture rigide (Format) 今日も場合の数の問題を解いていくぞ~問6からだ。これはまあ、組合せと円順列の問題だな。異なる\(n\)個のものの円順列の総数は\(\gauche( n-1 \right) !\)で表される。J’ai résolu ce problème en utilisant。 Et q 7.。僕はこの問題を間違えてしまった。(1)、(2)ともに、単純に右4、上4を並び替える順列などとして計算したのだ。D'ailleurs、同じものを含む順列は以下の式で表される。\(n\)個のうち、同じものがそれぞれ\(p\)個、\(q\)個、\(r\)個あるとき、これらを\(n\)個並べる順列の総数は、 $${ _{ n }{ C }_{ P }\fois }{ _{ n-p }{ C }_{ q }\fois }{ _{ n-p-q }{ C }_{ r }= frac { n! }{ P!q!r! } }\quad \left( p+q+r=n \right) $$ Mais、これでは長方形の経路を求めることになってしまう。今回の経路は三角形の形をしているのだ。 解答例によると(1)は仮の道として横3マス、縦3マスの四角形の道を考える。et、点C、D、E、Fを定める。Et puis、点Cから点Dに進む経路は右3、上3の順列なので、さっきの公式で求められる。あとは余分な経路を、(点Eを通る経路)\(+\)(点Fを通る経路)\(-\)(点EとFをともに通る経路)として求めて、引けばいいらしい。ふむふむ、なるほどな~ (2)はまたややこしい。解答例によると点P、Q、R、Sを定める。そして以下の4つの場合で場合分けする。 Pを通る経路 Qを通り、Pを通る経路 Rを通り、Qを通らない経路 Sを通り、Rを通らない経路 このようにすると、もれなく、重複なく数えられるらしい。これは分からなかった。このような経路の問題はどの点を通るかに着目して場合分けすればいいのかな。 次は問8。6人が4人まで乗れるボート2そうに分乗するときの乗り方の問題だ。人を区別する場合、しない場合とボートを区別する場合、しない場合の4通りの組合せを求める。(1)は人もボートも区別しない場合だが、ヒントにあるように分乗する人数だけを問題にすればいい。(4)は(3)\(\div 2!\)となるらしい。僕は場合分けして解いたが、答えは同じになった。まぁそういうものかな。 その次は問9。(1)は単純な組み合わせの問題だ。Mais、Quant à moi(2)、(3)をこれまた間違えてしまった。「重複組合せの問題かな?」と思って考えたのだが、重複順列の問題だったらしい。ちなみに重複組合せで\(n\)個の異なるものから重複を許して\(r\)個をとる組合せの数は\({ _{ n+r-1 }{ C }_{ r } }\)で表される。\(n-1\)個の仕切りと\(r\)個の〇の順列の数というやつだ。一方重複順列は、異なる\(n\)個のものから重複を許して\(r\)個を取り出す順列で、\({ n }^{ r }\)で求められる。(2)はこれを使えば簡単で、(3)も場合分けして(2)から引けば求められる。分からなかったな~ 最後に問10。二項定理の問題だ。二項定理とは\({ \gauche( a + b right) }^{ n }\)の展開式の一般項(第r+1番目の項)が\({ _{ n }{ C }_{ r } }{ un }^{ n-r }{ b }^{ r }\)と書けることである。(1)はこれを使って解けばいい。(2)はヒントによると次のようにすればいいらしい。\({ x }^{ K }\)の係数を\({ un }_{ K }\)とおく。そして\(\frac…
- Tableau math 1 part6 [fonction quadratique] Toshikazu Sunada (Rédigé par) Nombre de publications de recherche (Maison d’édition) 2003Le 1er avril. (Date de sortie) Couverture rigide (Format) 今日から2次関数の総合演習をやっていこう。 問18からだ。 (1)は普通に計算すればいい。 (2)は2次関数を\(x\)軸方向に\(q\)、\(y\)軸方向に\(-2\)だけ平行移動し、原点に対して対称移動せよという。 これは\(x\)を\(x-q\)、\(y\)を\(y+2\)とした後で、\(x\)を\(-x\)、\(y\)を\(-y\)とおけばOKだ。 次は問19。 条件から\(z\)を消去して\(x\)の2次式とみて平方完成する。 さらに得られた頂点を\(y\)の2次式とみて平方完成すれば最小値が求まるみたいだ。 そういうものか。 うまくできているんだな。 別解では下のように計算していた。 $$\begin{eqnarray*}{ x }^{ 2 }+4{ y }^{ 2 }+9{ z }^{ 2 }&=&{ \gauche( x-\frac { 1 }{ 3 } \right) }^{ 2 }+{ \gauche( 2y-\frac { 1 }{ 3 } \right) }^{ 2 }+{ \gauche( 3z-\frac { 1 }{ 3 } \right) }^{ 2 }\\ &+&2\cdot \frac { 1 }{ 3 } \gauche( x+2y+3z \right) -3{ \gauche( \frac { 1 }{ 3 } \right) }^{ 2 }\end{eqnarray*}$$ こうすると\(x+2y+3z=1\)を満たすようにうまいぐあいに平方完成される。 でもこれはなかなか思いつかないな~。 あとはインターネットで調べてみたら\(Y=2y\)、\(Z=3z\)とおいて、3次元の平面と原点を中心とする球の関係に帰着させて解いている人がいた。 このWebサイトに書かれていた。 平面と球が接するとき球の半径は最少になるので、あとは距離の公式とかベクトルを使って解けるみたい。 なるほどな~。 数学Bのベクトルに進んだ頃にまた考えてみるか。 そして問20。 これは\(a\)の範囲で場合分けして、最大値\(G\left( a \right)…
- Méthodes de création 高根 正昭 (Rédigé par)Kodansha Ltd., Tokyo (Maison d’édition) / 講談社現代新書1979年9月20日 (Date de sortie)Kindle Edition (Format) 社会科学の方法論について書かれた本。アメリカに留学して海外で職を得た経験のある著者が、アメリカの大学院での学習、研究活動から学んだ、研究の方法論についての手引書だという。Mais、社会科学だけにとどまらず、知的活動に携わる者ではいずれにせよ同じような方法論が必要になってくるらしい。 本書では実験的方法、数量的研究、質的研究、組織的比較例証法、参加観察法などの方法が述べられていた。僕は疲れてきて、後半はサラサラと本書を読んだので、分かったような分からないような感じだった。著者は西洋の既成知識を獲得することよりも、新しい知識の創造が大事ではないかと言う。なるほどな~また、現代においては高度な理論を駆使することなしには重要な発明や発見を行うことはできないとも言う。理論を構築しないといけないんだな~ あとは、筆者の体験からアメリカの大学院の雰囲気などが感じ取れておもしろかった。アメリカの大学はかなり厳しいらしい。僕もぬるま湯につかってないで、がんばろう!