神永 正博 (Rédigé par)
Kodansha Ltd., Tokyo (Maison d’édition) / Bluebacks
2014年11月21日 (Date de sortie)
Nouveau livre (Format)
直感では間違えてしまうような数学の題材がいろいろ取り上げられている本。
僕の知らないことがたくさん載っていて、おもしろかった。
数学の本はあまり読んだことがなかったからな。
本書の内容は下のようなものだ。
- 第1章 直感を裏切るデータ
- 第2章 直感を裏切る確率
- 第3章 直感を裏切る図形
- 第4章 直感を裏切る論理
感覚的には章が進むにつれ、ちょっと難しくなっていったような気がしたが、僕は全体的になんとなくフィーリングで読み進んだ。
「シンプソンのパラドックス」、「ベイズの定理」、「コーシー分布」、「モンテカルロ法」、「ルーローの多角形」などなど他にもたくさん様々なテーマが載っていた。
僕が特におもしろかったのは、「ベンフォードの法則」、「バースデーパラドックス」、「ポアソン分布」、「アークサイン法則」、「四色問題」、「連続体仮設」とかかな。
ベンフォードの法則とは、いろいろなデータの数字は先頭桁の数字が1であるものが非常に多く、2、3、…9と数字が大きくなるにしたがって頻度が下がるというものらしい。
不思議だな。
「一般化されたベンフォードの法則」は次式で表されるとか。
$$y=\frac { 1 }{ { x }^{ \Alpha } }\tag{1}$$
et(1)式で、\(\alpha =1\)のときが、「オリジナルのベンフォードの法則」だという。
ポアソン分布とは、互いに無関係な事象が固まって起きやすく、またしばらく起きないこともあるという分布らしい。
いろんな事故や天災にも当てはまるとか。
これも不思議だ。
Le reste、数学には本質的に証明があまりに長く、人間には全体を理解できない証明も存在するということも書かれていた。
et、否定も肯定も証明不可能な命題も存在するらしい。
Toutefois,、数学者は前へ進み続けるという。
第4章の最後に書かれていた文章が印象的だった。
それでもなお、数学者が歩みを止めることはないでしょう。連続体仮設が示した、「否定も肯定も不可能な命題がある」という事実。C’est、世紀の大難問に正面から立ち向かった、勇気と努力の結晶なのです。
(p.237)
Articles connexes
- Tableau math 1 part13 [forme et pesant] Toshikazu Sunada (Rédigé par) Nombre de publications de recherche (Maison d’édition) 2003Le 1er avril. (Date de sortie) Couverture rigide (Format) Chapitre 3 forme et son poids de。 Réglons d’un laboratoire de recherche。 C’est comme la trigonométrie ou apparaissent。 Tout d’abord, les questions 38。 J’ai transformé l’expression à l’aide de divers officiels et résolu.。 Quelque chose comme ce qui suit。 $$\Sin ^{ 2 }{ \Alpha = frac { 1-\COS { 2\Alpha } }{ 2 } } $$ $$\COS ^{ 2 }{ \Alpha = frac { 1+\COS { 2\Alpha } }{ 2 } } $$ $$\Sin { \gauche( 90°-\alpha \right) } = cos { \Alpha } $$ $$\COS { \gauche( 90°-\alpha \right) } = sin { \Alpha } $$ Mais、今\(\Alpha = 22,5 ° )なので\(3\Alpha = 90 °-alpha$ \)、\(5\Alpha = 180 °-3 alpha$ \)、\(7\Alpha = 180 °-alpha$ \)Dans une note qui、式が\(\Sin { \Alpha } \)、\(\COS { \Alpha } \)Représenté que par、Il semble plus facile。 Les questions suivantes 39。 À l’aide de la formule suivante、Transformer et si tout va bien il peut être résolu facilement。 $$\Sin ^{ 2 }{ \Thêta + } \COS ^{ 2 }{ \Thêta = 1…
- Tableau math 1 part11 [fonction quadratique] Toshikazu Sunada (Rédigé par)Nombre de publications de recherche (Maison d’édition)2003Le 1er avril. (Date de sortie)Couverture rigide (Format) 今回も解いていく。今日は問33からだ。絶対値がたくさんついている。僕はヒントに従って、\(N=2\)のときと\(N=3\)のときを計算してみて、あとは\(N\)が偶数と奇数の場合に分けて、なんとなく答えを出した。Toutefois,、正答を見てみると、以下のように回答していた。 $${ un }_{ K }\le x\le { un }_{ k+1 }\quad \left( k=1,2,\cdot \cdot \cdot \cdot \cdot \cdot ,N-1 \right) のとき$$ $$f\left( x \right) =\left( -N+2k \right) x-{ un }_{ 1 }-{ un }_{ 2 }-\cdot \cdot \cdot \cdot \cdot \cdot -{ un }_{ K }+{ un }_{ k+1 }+\cdot \cdot \cdot \cdot \cdot \cdot +{ un }_{ N }$$ あとは\(N\)が偶数の場合と奇数の場合で、\(-N+2k\)が正か負か0かに着目してグラフの形を考えてみれば解けるみたい。こうやってしっかり解かないといけなかったみたいだ。数学2の単調増加、単調減少の考え方も入っているのかな。 次は問34。(1)はまず、2次方程式が異なる実数の2解を持つように判別式\(D>0\)とすればいい。そして共通解を\(x=\alpha \)Et garder、2本の2次方程式に代入して計算すると、\({ \Alpha }^{ 2 }\)の項がうまい具合に消えて、\(\alpha=1\)と分かる。これで\(a\)の範囲が求められる。(2)は\(f\left( x \right) ={ x }^{ 2 }+ax+4\)、\(g\left( x \right) ={ x }^{ 2 }+4x+\alpha \)Et garder、グラフを書いてみる。あとは\(f\left( x \right)\)と\(g\left( x \right)\)が\(x=1\)で交わることに注意してグラフから実数解の大小を考えればいいだろう。 そして問35。\(x\)と\(p\)で表される放物線と三角形が交わるような実数\(p\)の範囲を求めよという問題だ。僕はまずヒントにしたがって放物線が三角形の各頂点を通るときの\(p\)を求めた。あとは\(f\left( x \right) ={ \gauche( x-p…
- チャート式 数学1 part10【2次関数編】 Toshikazu Sunada (Rédigé par)Nombre de publications de recherche (Maison d’édition)2003Le 1er avril. (Date de sortie)Couverture rigide (Format) 今日も2次関数のB問題を進めていこう。問30からだ。(1)は普通に場合分けをして絶対値を外せばいい。(2)がこの問題のポイントとなるところだろう。【1】\(x\ge a\)のとき、\(a\ge \frac { 1 }{ 2 } \)の場合と\(un<\frac { 1 }{ 2 } \)の場合で最小値\(m\left( a \right) \)が異なるので、場合分けする。同様に【2】\(x<a\)のときは、\(un>-\frac { 1 }{ 2 } \)の場合と\(a\le -\frac { 1 }{ 2 } \)の場合で場合分けが必要だ。そしたら\(a\ge \frac { 1 }{ 2 } \)、\(-\frac { 1 }{ 2 } <un<\frac { 1 }{ 2 } \)、\(a\le -\frac { 1 }{ 2 } \)の場合で【1】と【2】のそれぞれの差をとってどちらがより小さいかを明らかにし、関数\(f\left( x \right) \)の最小値\(m\left( a \right) \)を求めることになる。僕はグラフを見てなんとなく直感で解いたが、それではダメだったんだな。しっかり場合分けが必要みたいだ。(3)は(2)がちゃんと解けていれば簡単だ。 次は問31。Premier(1)。今\(a\)、\(b\)、\(x\)、\(y\)全てが正の実数なので、以下の不等式 $$\frac { x }{ un } \le \frac { y }{ b } $$ の両辺に\(ab\)をかけたり、2乗したりしても、不等号の向きは変わらないし、通常は2乗することで生じる余計な解が含まれることもない。あとは条件式を利用して\({ y }^{ 2 }\)を消去すればいい。(2)は(1)から\(0\le x\le \frac { un }{ \sqrt { { un }^{…