高根 正昭 (Rédigé par)
Kodansha Ltd., Tokyo (Maison d’édition) / Kodansha Gendai Shinsho
197920 septembre - (Date de sortie)
Kindle Edition (Format)
社会科学の方法論について書かれた本。
アメリカに留学して海外で職を得た経験のある著者が、アメリカの大学院での学習、研究活動から学んだ、研究の方法論についての手引書だという。
Mais、社会科学だけにとどまらず、知的活動に携わる者ではいずれにせよ同じような方法論が必要になってくるらしい。
本書では実験的方法、数量的研究、質的研究、組織的比較例証法、参加観察法などの方法が述べられていた。
僕は疲れてきて、後半はサラサラと本書を読んだので、分かったような分からないような感じだった。
著者は西洋の既成知識を獲得することよりも、新しい知識の創造が大事ではないかと言う。
なるほどな~
Aussi、現代においては高度な理論を駆使することなしには重要な発明や発見を行うことはできないとも言う。
理論を構築しないといけないんだな~
Le reste、筆者の体験からアメリカの大学院の雰囲気などが感じ取れておもしろかった。
アメリカの大学はかなり厳しいらしい。
僕もぬるま湯につかってないで、がんばろう!
Articles connexes
- チャート式 数学1 part10【2次関数編】 Toshikazu Sunada (Rédigé par)Nombre de publications de recherche (Maison d’édition)2003Le 1er avril. (Date de sortie)Couverture rigide (Format) 今日も2次関数のB問題を進めていこう。問30からだ。(1)は普通に場合分けをして絶対値を外せばいい。(2)がこの問題のポイントとなるところだろう。【1】\(x\ge a\)のとき、\(a\ge \frac { 1 }{ 2 } \)の場合と\(un<\frac { 1 }{ 2 } \)の場合で最小値\(m\left( a \right) \)が異なるので、場合分けする。同様に【2】\(x<a\)のときは、\(un>-\frac { 1 }{ 2 } \)の場合と\(a\le -\frac { 1 }{ 2 } \)の場合で場合分けが必要だ。そしたら\(a\ge \frac { 1 }{ 2 } \)、\(-\frac { 1 }{ 2 } <un<\frac { 1 }{ 2 } \)、\(a\le -\frac { 1 }{ 2 } \)の場合で【1】と【2】のそれぞれの差をとってどちらがより小さいかを明らかにし、関数\(f\left( x \right) \)の最小値\(m\left( a \right) \)を求めることになる。僕はグラフを見てなんとなく直感で解いたが、それではダメだったんだな。しっかり場合分けが必要みたいだ。(3)は(2)がちゃんと解けていれば簡単だ。 次は問31。Premier(1)。今\(a\)、\(b\)、\(x\)、\(y\)全てが正の実数なので、以下の不等式 $$\frac { x }{ un } \le \frac { y }{ b } $$ の両辺に\(ab\)をかけたり、2乗したりしても、不等号の向きは変わらないし、通常は2乗することで生じる余計な解が含まれることもない。あとは条件式を利用して\({ y }^{ 2 }\)を消去すればいい。(2)は(1)から\(0\le x\le \frac { un }{ \sqrt { { un }^{…
- Explore les causes de la notion de problèmes inverses en mathématiques 上村 豊 (Rédigé par)Kodansha Ltd., Tokyo (Maison d’édition) / ブルーバックス2014年12月19日 (Date de sortie)Nouveau livre (Format) 逆問題について書かれた数学の本。原因から結果を予測するのが順問題で、逆に結果から原因を探るのが逆問題だという。逆問題の哲学は現象から自然を探ることにあると著者は言う。ギャグが多用されて話が進められていくが、内容はなかなか難しい。 行列の連立1次方程式という線形代数の分野があったり、恐竜絶滅の原因を探る生物学?に話が及んだり、プランクのエネルギー量子発見についての理論物理学の分野が紹介されていたりする。他にも海洋物理学や量子力学の分野について述べられていたりと様々なテーマにおける逆問題が、実際に計算式を示しながら説明されてゆく。僕はよく分からない部分もあったが、感覚で、そういうものなのかと式を流し読みしながらパラパラと読み進めていった。 あとがきで著者は次のように述べている。 現代科学において、逆問題の発想は仮説を法則や原理へと昇華させるために初期のそして重要な段階で、決定的な役割を果たしてきた。そう見るべきであろう。(p.259) 逆問題という用語も概念もまだ生まれていなかった過去においても、科学者は模索から生じた仮説に基づく逆問題を解くことによって理論を先へ進めてきたみたいだ。なるほどな~。僕ももっと勉強しないとなと思いました。
- Tableau math 1 part11 [fonction quadratique] Toshikazu Sunada (Rédigé par)Nombre de publications de recherche (Maison d’édition)2003Le 1er avril. (Date de sortie)Couverture rigide (Format) 今回も解いていく。今日は問33からだ。絶対値がたくさんついている。僕はヒントに従って、\(N=2\)のときと\(N=3\)のときを計算してみて、あとは\(N\)が偶数と奇数の場合に分けて、なんとなく答えを出した。Toutefois,、正答を見てみると、以下のように回答していた。 $${ un }_{ K }\le x\le { un }_{ k+1 }\quad \left( k=1,2,\cdot \cdot \cdot \cdot \cdot \cdot ,N-1 \right) のとき$$ $$f\left( x \right) =\left( -N+2k \right) x-{ un }_{ 1 }-{ un }_{ 2 }-\cdot \cdot \cdot \cdot \cdot \cdot -{ un }_{ K }+{ un }_{ k+1 }+\cdot \cdot \cdot \cdot \cdot \cdot +{ un }_{ N }$$ あとは\(N\)が偶数の場合と奇数の場合で、\(-N+2k\)が正か負か0かに着目してグラフの形を考えてみれば解けるみたい。こうやってしっかり解かないといけなかったみたいだ。数学2の単調増加、単調減少の考え方も入っているのかな。 次は問34。(1)はまず、2次方程式が異なる実数の2解を持つように判別式\(D>0\)とすればいい。そして共通解を\(x=\alpha \)Et garder、2本の2次方程式に代入して計算すると、\({ \Alpha }^{ 2 }\)の項がうまい具合に消えて、\(\alpha=1\)と分かる。これで\(a\)の範囲が求められる。(2)は\(f\left( x \right) ={ x }^{ 2 }+ax+4\)、\(g\left( x \right) ={ x }^{ 2 }+4x+\alpha \)Et garder、グラフを書いてみる。あとは\(f\left( x \right)\)と\(g\left( x \right)\)が\(x=1\)で交わることに注意してグラフから実数解の大小を考えればいいだろう。 そして問35。\(x\)と\(p\)で表される放物線と三角形が交わるような実数\(p\)の範囲を求めよという問題だ。僕はまずヒントにしたがって放物線が三角形の各頂点を通るときの\(p\)を求めた。あとは\(f\left( x \right) ={ \gauche( x-p…