Yanagawa, Takaaki (Rédigé par)
Nombre de publications de recherche (Maison d’édition)
2003Le 1er avril. (Date de sortie)
Couverture rigide (Format)
La question 34 consiste à énoncer la vérité ou la fausseté d’une proposition.。
Quant à moi(1)J’ai fait une erreur。
偽の場合は反例を書けばいい。
問35は(3)J’ai fait une erreur。
\( x^{2}+ax+b \lt 0\)の解が\( 0 \lt x \lt 1 \)を含むただし一致しない事であるみたい。
次は問36。
数Iで学んだ因数分解の公式で簡単に解ける。
そうして問37。
(1)は対偶を示すのが簡単という。(2)はn=3k, n=3k+1, n=3k+2の場合に分けて考える。
さらに問38。
(2)は少なくともの証明で背理法をつかう。
総合演習Bも解いていく。
まずは問39だ。
ヒントを見るとa,b,cの偶奇で8つの場合に分かれる。
過程を満たす場合を調べる。
さらに問40。
(2)は対偶を調べればよい。
そして問41。
存在するとは少なくとも1つあるという事で(1)は背理法が有効。
(2)は偽だ。
最後に問42である。
(1)は背理法、(2)は(1)を利用して解ける。
次回は平面図形の総合演習を解いていく。
Articles connexes
- Formule graphique Mathématiques A Partie 6 [Probabilité] Yanagawa, Takaaki (Rédigé par)Nombre de publications de recherche (Maison d’édition)2003Le 1er avril. (Date de sortie)Couverture rigide (Format) 今回も解いていこう。まずは問23だ。二つのサイコロが違うもので(3)Et(4)peut être calculé comme indépendant de l’essai。Vient ensuite la question 24.。Il serait facile de penser à des événements postérieurs comme des indices。Et la question 25.。少なくとも1つという表現には余事象を考えればいいらしい。僕は場合分けして互いに排反として確率の加法定理で普通に解いた。あとは問26。(1)は反復試行の確率だ。(2)は期待値を求めればいいがヒントによると次のように表せるらしい。 $$ X=k \left(k=0, 1, 2, \cdots, n \right)のときの確率が{ _{ n }{ C }_{ K }{ P }^{ K }{ q }^{ n-k } }\quad \left(q=1-p \right) $$ $$ である変量Xの期待値はnpである $$ ここからはB問題だ。問27の(2)はさいころがちょうど3色で塗られている組み合わせは①(1面,1面,4面)、②(1面,2面,3面)、③(2面,2面,2面)être。使う3色の選び方は\(_{ 6 }{ C }_{ 3 } = 20\)通り。それぞれについて①の場合は\( 3 \times _{ 6 }{ C }_{ 4 } \times _{ 2 }{ C }_{ 1 } = 90\)通り。②の場合は\( 3! \times _{ 6 }{ C }_{ 3 } \times _{ 3 }{ C }_{ 2 } = 360\)通り。③の場合は\( _{ 6 }{ C }_{ 2 } \times _{ 4 }{ C }_{ 2 } \times _{…
- Graphique-mathématiques A part4 [si le nombre] Yanagawa, Takaaki (Rédigé par) Nombre de publications de recherche (Maison d’édition) 2003Le 1er avril. (Date de sortie) Couverture rigide (Format) 今日も場合の数の問題を解いていく。 まずは問15。 僕は次のようにして解いた。 Au début、回転して重なる場合も異なる図形であるとすると、全ての塗り分け方は\({ 2 }^{ 9 }=512\)通りある。 また回転しても形が変わらない塗り分け方を数えると8通りある。 さらに、回転したら形が2つになる塗り分け方は12通りある。 残りは回転したら形が4つになる塗り分け方である。 よってその塗り分け方は、 $$\frac { 512-\gauche( 8+2\fois 12 \right) }{ 4 } =120$$ 通りである。 これらから、求める答えは $$8+12+120=140$$ 通りだ。 しかしこのやり方だと、回転したとき形が2つになる塗り分け方を数えるのが分かりにくい。 数えもれが出てしまう可能性が大だ。 解答例では9マスを中央の正方形と周りの4つの長方形に分けて計算していた。 長方形の塗り方は4通りで、この中から周りの4つの長方形がの塗り分け方が 1種類のとき 2種類のとき 3種類のとき 4種類のとき を場合分けして考えればいいという。 そういうものか~ 次は問16。 (1)、(2)は\(a=6\)なので南北方向の敷き詰め方は決まる。 あとは東西方向の長さに着目すればいい。 (3)Selon les conseils、まず辺ABに沿った部分から敷くと4通りが考えられる。 et、それらの場合の残り部分の敷き詰め方を考えればいい。 (1)、(2)のやり方も使って解いていくことになるが、僕は計算間違いをしてしまった。 なかなかミスが多くて困ったものだ。 その次は問17。 展開式の一般項は二項定理を用いて次式で表される。 $${ _{ m }{ C }_{ j } }{ \cdot _{ n }{ C }_{ K }{ x }^{ 2j+3k } }$$ あとは\({ x }^{ 6 }\)について\(2j+3k=6\)を満たす\(0\)以上の整数\(\gauche( j,k \right) \)を考えればいい。 そうしたら\(m /)の範囲を求めて、それぞれの\(m /)について\(n\)が存在するかを考える。 これで(1)が解けた。 (1)が分かれば(2)は簡単に解ける。 最後に問18。 (1)は背理法を使うなりして簡単に解ける。 まぁ背理法を使わなくても解けるみたいだけどな。 (2)はヒントによると以下のようにするのがポイントみたいだ。 $$\gauche( { 2 }^{ p-1 }-1 \right) \fois…
- Graphique-mathématiques A Yanagawa, Takaaki (Rédigé par) Nombre de publications de recherche (Maison d’édition) 2003Le 1er avril. (Date de sortie) Couverture rigide (Format) チャート式数学1が終わったので今度は数学Aをやっていこうと思う。 この赤チャートは2013年と2017年に改訂されて、今では新課程バージョンが発売されているようだ。 僕の買ったこの本は2003年発売のバージョンなのでちょっと古いけどな。 まぁいいや、同じような問題も含まれているだろうから気にせず解いていこう。 この本に含まれている範囲は以下のようになっている。 第1章 場合の数 第2章 確率 第3章 論理と集合 第4章 平面図形 総合演習の問題だけを解いていこうと思う。 大学受験問題の数学カテゴリのチャート式数学Aというタグでやっていこう。