Yanagawa, Takaaki (Rédigé par)
Nombre de publications de recherche (Maison d’édition)
2003Le 1er avril. (Date de sortie)
Couverture rigide (Format)
今回も解いていこう。
まずは問23だ。
二つのサイコロが違うもので(3)Et(4)peut être calculé comme indépendant de l’essai。
Vient ensuite la question 24.。
Il serait facile de penser à des événements postérieurs comme des indices。
Et la question 25.。
少なくとも1つという表現には余事象を考えればいいらしい。
僕は場合分けして互いに排反として確率の加法定理で普通に解いた。
あとは問26。
(1)は反復試行の確率だ。
(2)は期待値を求めればいいがヒントによると次のように表せるらしい。
$$ X=k \left(k=0, 1, 2, \cdots, n \right)のときの確率が{ _{ n }{ C }_{ k }{ p }^{ k }{ q }^{ n-k } }\quad \left(q=1-p \right) $$
$$ である変量Xの期待値はnpである $$
ここからはB問題だ。
問27の(2)はさいころがちょうど3色で塗られている組み合わせは①(1面,1面,4面)、②(1面,2面,3面)、③(2面,2面,2面)être。
使う3色の選び方は\(_{ 6 }{ C }_{ 3 } = 20\)通り。
それぞれについて①の場合は\( 3 \times _{ 6 }{ C }_{ 4 } \times _{ 2 }{ C }_{ 1 } = 90\)通り。
②の場合は\( 3! \times _{ 6 }{ C }_{ 3 } \times _{ 3 }{ C }_{ 2 } = 360\)通り。
③の場合は\( _{ 6 }{ C }_{ 2 } \times _{ 4 }{ C }_{ 2 } \times _{ 2 }{ C }_{ 2 } = 90\)通り。
よって\( 20 \times \left( 90 + 360 + 90 \right) = 20 \times 540 \)となり\( \displaystyle \frac{ 20 \times 540 }{ 6^6 } = \displaystyle \frac{ 25 }{ 108 } \)となる。
次は問28だ。
総当たりで2点を選んでもれなく直線距離を調べればいい。
僕は抜けがあったので注意が必要だ。
その後は問29。
ヒントのように1が\( x \)回、2,3が合わせて\( y \)回、4が\( z \)回、5,6が合わせて\( w \)回出たとするなどして適するものを選べばいい。
そして問30。
(1)は場合分けしても解けるが(2)も考えると余事象が考えやすいらしい。
ポイントは裏が出て取り除かれた硬貨も取り除かずに数えることだろう。
解説のように試行が\( n \)回以上行われるという事象は試行が\( n-1 \)回までに終了するという事象の余事象であり、各硬貨について\( n-1 \)回投げるといずれかの回で裏が出る場合を考えて
$$ 1-q_n = \{ 1-\left( \frac{ 1 }{ 2 }\right)^\left(n-1\right) \}^3 $$
となる。
僕は漸化式のように解こうと思ったがそれでは難しいみたいだ。
その後は問31。
これは2枚の紙を重ね合わせたときに、重なることのあるマス目を分類して計算すればいい。
僕は間違えたが簡単だ。
それと問32。
条件付き確率は\( P_A \left( B \right) = \displaystyle \frac{ P\left( A\cap B \right) }{ P \left( A \right) }\)で表されるので場合を分けて計算する。
最後は問33。
僕は数え抜けがあってしまった。
実際に図を描いて解くのが分かりやすくていいだろう。
これで確率の総合演習が終わった。
結構早く終えられたな。
次回は論理と集合について進めていく。
Articles connexes
- Diagramme part14 math 1 [forme et pesant] Toshikazu Sunada (Rédigé par) Nombre de publications de recherche (Maison d’édition) 2003Le 1er avril. (Date de sortie) Couverture rigide (Format) 今日も解いていくぞ~。 問43からだ。 Maintenant、\(\gauche( b+c \right) :\gauche( c+a \right) :\gauche( a + b right) =4:5:6\)であるという。 ヒントにしたがって、\(\gauche( b+c \right) =4k\)、\(\gauche( c+a \right) =5k\)、\(\gauche( a + b right) =6k\)(\(K>0\))とおく。 そしてこの連立方程式を解くと\(a\)、\(b\)、\(c\)が\(k\)で表される。 あとは\(\triangle ABC\)について正弦定理と余弦定理を使うと答えが求められる。 次は問44。 余弦定理と面積を求める公式を使えばいい。 これは簡単だ。 その次は問45。 これも正弦定理や余弦定理、面積の公式を用いて解いていけばいい。 円に内接する四角形の対角をたすと\(180°\)になることに注意だな。 まぁ簡単。 そして問46。 四角錐についての問題だ。 実際に図を描いてみて、断面で切って平面図形を取り出して解くことになる。 僕は余弦定理、面積の公式を使って解いた。 Aussi、三角錐の体積は\(底面積\times 高さ\times \frac { 1 }{ 3 } \)であることなどを思い出した。 念のため、三角形の相似条件を復習のためまとめておく。 三角形の相似条件は 3組の辺の比が全て等しい 2組の辺の比とその間の角がそれぞれ等しい 2組の角がそれぞれ等しい である。 一般的に平面図形(立体)が相似である場合、 対応する線分の長さの比はすべて等しい 対応する角の大きさはすべて等しい ということが成り立つらしい。 最後に問47。 相似比が\(m:n\)である図形の面積の比は\({ m }^{ 2 }:{ n }^{ 2 }\)、相似比が\(m:n\)である立体の体積の比は\({ m }^{ 3 }:{ n }^{ 3 }\)être。 また三角柱の体積は\(底面積\times 高さ \)être。 これらから(1)は求められる。 次は(2)Mais、これを僕は間違ってしまった。 四角柱を半分に切って三角柱を作って…みたいな計算をしたのだが、これではうまくいかないんだな。 体積が半分とは限らないみたいだ。 線分ADの延長と線分BGの延長の交点をIなどとして、三角錐I-ABC、三角錐I-DGH、三角錐A-DGHに着目すればいいとのことだ。 そういう風に解くのか~。 これで総合演習のA問題が終わった。 次回からB問題を解いていこう。 難しくなるかな?
- Graphique-mathématiques A part3 [si le nombre] Yanagawa, Takaaki (Rédigé par)Nombre de publications de recherche (Maison d’édition)2003Le 1er avril. (Date de sortie)Couverture rigide (Format) A partir d’aujourd'hui chapitre 1 du laboratoire de recherche affaire B pour résoudre ce problème。Tout d’abord, à partir de 11.。(A)Des termes、正の整数\(m /)は\(2\)を素因数にもたず、\(9={ 3 }^{ 2 }\)を因数にもつと分かる。(1)は背理法で証明すればいい。\(m /)の正の約数で素数となるものが3つ以上あるとする。それらを\(3\)、\(p\)、\(q\)、…とする。ただし\(p\)、\(q\)、…は\(5\)以上の素数である。すると\(m /)は以下のように素因数分解される。 $$m={ 3 }^{ K }{ P }^{ un }{ q }^{ b }\cdot \cdots \quad \left( k\ge 2,\quad a\ge 1,\quad b\ge 1,\quad \cdots \right) $$ このとき\(m /)の正の約数の個数は次式で表される。 $$\gauche( k+1 \right) \gauche( a+1 \right) \gauche( b+1 \right) \cdots $$ Maintenant、これは\(12\)以上となり、条件(B)に適さない。よって\(m /)の正の約数で素数となるものは高々2個だ。なるほどな~ (2)は\(m /)の正の約数となる素数が、 \(3\)のみ \(3\)と\(5\)以上の素数\(p\) の場合の2通りを考えればいい。おもしろい問題だったな。 次は問12。(1)は、僕は以下の4通りに分けて計算して足し合わせて、暗証番号の総数から引いた。 同じ番号が2つずつの2組がある場合 同じ番号が2つの1組がある場合 同じ番号が3つ続く場合 同じ番号が4つ続く場合 だが、解答例を見ると同じ数字が続かない番号の個数ということで、\(10\times 9\times 9\times 9\)と簡単に求められるみたいだ。そういうものか。 (2)はヒントによると\(0\SIM 9\)は対等である。よって\(a=0\)の場合を数えて10倍すれば答えが出るらしい。解き方としては以下の3通りに分けて数え上げればいいとのことだ。 \(b=2\)Car si le \(b=8\)Car si le \(b=3,4,\cdots , 7\) Quant à moi、ヒントがないとこれは気付かなかっただろう。う~ん、難しいな。 その次は問13。同じものを含む順列の問題だ。(1)は(両端の文字が異なる)\(=)(全体)\(-\)(両端の文字が同じ)、として解けばいい。(2)は以下のように場合分けする。 文字が全て異なるとき 同じ文字2個を1組だけ含むとき 同じ文字を2個ずつ2組含むとき 同じ文字を3個含むとき この問題は解きやすいほうだったかな。 最後に問14。ヒントにあるように、\(x\)座標から\(S\)、\(T\)の回数の和が、\(y\)座標から\(S\)、\(T\)の回数の差が分かる。(2)、(3)について僕は樹形図を書いて解いた。そんなに複雑でないので力技でも解けるみたいだ。題意を満たすように解くと、点\(\gauche( 1,1 \right) \)から点\(\gauche( 7,1 \right) \)へ移る途中に、ある点Pで\(x\)軸上にあるとする。このとき、点P以降の経路で\(S\)と\(T\)を入れ替えると点\(\gauche( 7,-1 \right) \)に移ることを利用するという。\(S\)と\(T\)を入れ替えても、同じものを含む順列の個数は変わらないからな。点P以前の経路は共通でなので、(点P以前の経路の数)\(\fois \)(点P以降の経路の数)は等しい。結局点Pから\(x\)軸を通って点\(\gauche( 7,1 \right) \)へ移る場合と、点Pから点\(\gauche( 7,-1 \right) \)に移る場合は同じ場合の数となるみたい。ちょっと分かりにくい問題だった。 今日はこれで終わりにする。
- チャート式 数学1 part10【2次関数編】 Toshikazu Sunada (Rédigé par)Nombre de publications de recherche (Maison d’édition)2003Le 1er avril. (Date de sortie)Couverture rigide (Format) 今日も2次関数のB問題を進めていこう。問30からだ。(1)は普通に場合分けをして絶対値を外せばいい。(2)がこの問題のポイントとなるところだろう。【1】\(x\ge a\)のとき、\(a\ge \frac { 1 }{ 2 } \)の場合と\(un<\frac { 1 }{ 2 } \)の場合で最小値\(m\left( a \right) \)が異なるので、場合分けする。同様に【2】\(x<a\)のときは、\(un>-\frac { 1 }{ 2 } \)の場合と\(a\le -\frac { 1 }{ 2 } \)の場合で場合分けが必要だ。そしたら\(a\ge \frac { 1 }{ 2 } \)、\(-\frac { 1 }{ 2 } <un<\frac { 1 }{ 2 } \)、\(a\le -\frac { 1 }{ 2 } \)の場合で【1】と【2】のそれぞれの差をとってどちらがより小さいかを明らかにし、関数\(f\left( x \right) \)の最小値\(m\left( a \right) \)を求めることになる。僕はグラフを見てなんとなく直感で解いたが、それではダメだったんだな。しっかり場合分けが必要みたいだ。(3)は(2)がちゃんと解けていれば簡単だ。 次は問31。Premier(1)。今\(a\)、\(b\)、\(x\)、\(y\)全てが正の実数なので、以下の不等式 $$\frac { x }{ un } \le \frac { y }{ b } $$ の両辺に\(ab\)をかけたり、2乗したりしても、不等号の向きは変わらないし、通常は2乗することで生じる余計な解が含まれることもない。あとは条件式を利用して\({ y }^{ 2 }\)を消去すればいい。(2)は(1)から\(0\le x\le \frac { un }{ \sqrt { { un }^{…