Yanagawa, Takaaki (Rédigé par)
Nombre de publications de recherche (Maison d’édition)
2003Le 1er avril. (Date de sortie)
Couverture rigide (Format)
Exercices complets de probabilité de résoudre ce problème。
Tout d’abord, numéro 19。
ヒントによると確率の計算の基本は全事象\(U\)の場合の数\(N\)Et、事象\(A\)の起こる場合の数\(a\)を求めて、\(P\left( A \right) =\frac { a }{ N } \)とすることである。
いま、さいころは異なるものと考えて、\(N={ 6 }^{ 4 }\)être。
Le reste(1)Je vais(4)Sur\(a\)を考えればいい。
特に注意が必要なのは(4)かな。
僕は最初解いたときに確率\(P\left( A \right)\)が\(1\)を超えてしまい、間違いに気づいた。
D'ailleurs\(a={ _{ 6 }{ C }_{ 1 } }{ \times _{ 5 }{ C }_{ 2 }\times }{ _{ 4 }{ C }_{ 2 } }{ \times _{ 2 }{ C }_{ 1 } }\)と解けた。
解答例とは違うやり方だが、同じ答えになる。
次は問20。
円順列の問題だ。
(2)、(3)で隣り合う人たちを1組と考えて円順列を計算するのがポイントかな。
これは簡単だった。
その次は問21。
(1)、(2)は簡単。
(3)は独立試行の問題だ。
独立な試行の確率は\(P\left( C \right) =P\left( A \right) P\left( B \right) \)と表されるので、普通に解けばいい。
これも簡単だ。
最後は問22。
これは反復試行の問題だ。
反復試行の確率は次のようになるらしい。
$${ _{ n }{ C }_{ r }{ p }^{ r }{ q }^{ n-r } }\quad \left(ただしq=1-p \right) $$
あとは解ける、簡単簡単。
と思ったら僕はこの問題を間違えてしまった。
最後は必ず白玉を取り出さないといけなかったんだな。
そうでないと、今の場合途中で白玉を3個取り出して、試行が終了してしまう。
なるほどね。
今回はこれで終わり。
僕は特に確率が得意というわけではないのだが、今日のこれらの問題は簡単だった。
これはサクサク進むなぁ~
意外と確率の問題は解きやすいのかもしれない。
まぁまだA問題だから、徐々に難しくなるのかもしれないが。
また次回やっていこう。
Articles connexes
- Graphique-mathématiques A part3 [si le nombre] Yanagawa, Takaaki (Rédigé par)Nombre de publications de recherche (Maison d’édition)2003Le 1er avril. (Date de sortie)Couverture rigide (Format) A partir d’aujourd'hui chapitre 1 du laboratoire de recherche affaire B pour résoudre ce problème。Tout d’abord, à partir de 11.。(A)Des termes、正の整数\(m /)は\(2\)を素因数にもたず、\(9={ 3 }^{ 2 }\)を因数にもつと分かる。(1)は背理法で証明すればいい。\(m /)の正の約数で素数となるものが3つ以上あるとする。それらを\(3\)、\(p\)、\(q\)、…とする。ただし\(p\)、\(q\)、…は\(5\)以上の素数である。すると\(m /)は以下のように素因数分解される。 $$m={ 3 }^{ K }{ P }^{ un }{ q }^{ b }\cdot \cdots \quad \left( k\ge 2,\quad a\ge 1,\quad b\ge 1,\quad \cdots \right) $$ このとき\(m /)の正の約数の個数は次式で表される。 $$\gauche( k+1 \right) \gauche( a+1 \right) \gauche( b+1 \right) \cdots $$ Maintenant、これは\(12\)以上となり、条件(B)に適さない。よって\(m /)の正の約数で素数となるものは高々2個だ。なるほどな~ (2)は\(m /)の正の約数となる素数が、 \(3\)のみ \(3\)と\(5\)以上の素数\(p\) の場合の2通りを考えればいい。おもしろい問題だったな。 次は問12。(1)は、僕は以下の4通りに分けて計算して足し合わせて、暗証番号の総数から引いた。 同じ番号が2つずつの2組がある場合 同じ番号が2つの1組がある場合 同じ番号が3つ続く場合 同じ番号が4つ続く場合 だが、解答例を見ると同じ数字が続かない番号の個数ということで、\(10\times 9\times 9\times 9\)と簡単に求められるみたいだ。そういうものか。 (2)はヒントによると\(0\SIM 9\)は対等である。よって\(a=0\)の場合を数えて10倍すれば答えが出るらしい。解き方としては以下の3通りに分けて数え上げればいいとのことだ。 \(b=2\)Car si le \(b=8\)Car si le \(b=3,4,\cdots , 7\) Quant à moi、ヒントがないとこれは気付かなかっただろう。う~ん、難しいな。 その次は問13。同じものを含む順列の問題だ。(1)は(両端の文字が異なる)\(=)(全体)\(-\)(両端の文字が同じ)、として解けばいい。(2)は以下のように場合分けする。 文字が全て異なるとき 同じ文字2個を1組だけ含むとき 同じ文字を2個ずつ2組含むとき 同じ文字を3個含むとき この問題は解きやすいほうだったかな。 最後に問14。ヒントにあるように、\(x\)座標から\(S\)、\(T\)の回数の和が、\(y\)座標から\(S\)、\(T\)の回数の差が分かる。(2)、(3)について僕は樹形図を書いて解いた。そんなに複雑でないので力技でも解けるみたいだ。題意を満たすように解くと、点\(\gauche( 1,1 \right) \)から点\(\gauche( 7,1 \right) \)へ移る途中に、ある点Pで\(x\)軸上にあるとする。このとき、点P以降の経路で\(S\)と\(T\)を入れ替えると点\(\gauche( 7,-1 \right) \)に移ることを利用するという。\(S\)と\(T\)を入れ替えても、同じものを含む順列の個数は変わらないからな。点P以前の経路は共通でなので、(点P以前の経路の数)\(\fois \)(点P以降の経路の数)は等しい。結局点Pから\(x\)軸を通って点\(\gauche( 7,1 \right) \)へ移る場合と、点Pから点\(\gauche( 7,-1 \right) \)に移る場合は同じ場合の数となるみたい。ちょっと分かりにくい問題だった。 今日はこれで終わりにする。
- Graphique-mathématiques A part4 [si le nombre] Yanagawa, Takaaki (Rédigé par) Nombre de publications de recherche (Maison d’édition) 2003Le 1er avril. (Date de sortie) Couverture rigide (Format) 今日も場合の数の問題を解いていく。 まずは問15。 僕は次のようにして解いた。 Au début、回転して重なる場合も異なる図形であるとすると、全ての塗り分け方は\({ 2 }^{ 9 }=512\)通りある。 また回転しても形が変わらない塗り分け方を数えると8通りある。 さらに、回転したら形が2つになる塗り分け方は12通りある。 残りは回転したら形が4つになる塗り分け方である。 よってその塗り分け方は、 $$\frac { 512-\gauche( 8+2\fois 12 \right) }{ 4 } =120$$ 通りである。 これらから、求める答えは $$8+12+120=140$$ 通りだ。 しかしこのやり方だと、回転したとき形が2つになる塗り分け方を数えるのが分かりにくい。 数えもれが出てしまう可能性が大だ。 解答例では9マスを中央の正方形と周りの4つの長方形に分けて計算していた。 長方形の塗り方は4通りで、この中から周りの4つの長方形がの塗り分け方が 1種類のとき 2種類のとき 3種類のとき 4種類のとき を場合分けして考えればいいという。 そういうものか~ 次は問16。 (1)、(2)は\(a=6\)なので南北方向の敷き詰め方は決まる。 あとは東西方向の長さに着目すればいい。 (3)Selon les conseils、まず辺ABに沿った部分から敷くと4通りが考えられる。 et、それらの場合の残り部分の敷き詰め方を考えればいい。 (1)、(2)のやり方も使って解いていくことになるが、僕は計算間違いをしてしまった。 なかなかミスが多くて困ったものだ。 その次は問17。 展開式の一般項は二項定理を用いて次式で表される。 $${ _{ m }{ C }_{ j } }{ \cdot _{ n }{ C }_{ K }{ x }^{ 2j+3k } }$$ あとは\({ x }^{ 6 }\)について\(2j+3k=6\)を満たす\(0\)以上の整数\(\gauche( j,k \right) \)を考えればいい。 そうしたら\(m /)の範囲を求めて、それぞれの\(m /)について\(n\)が存在するかを考える。 これで(1)が解けた。 (1)が分かれば(2)は簡単に解ける。 最後に問18。 (1)は背理法を使うなりして簡単に解ける。 まぁ背理法を使わなくても解けるみたいだけどな。 (2)はヒントによると以下のようにするのがポイントみたいだ。 $$\gauche( { 2 }^{ p-1 }-1 \right) \fois…
- Tableau math 1 part4 [chapitre équations et inéquations] Toshikazu Sunada (Rédigé par)Nombre de publications de recherche (Maison d’édition)2003Le 1er avril. (Date de sortie)Couverture rigide (Format) 今日も解いていきます。問12からだ。ヒントによると\(x\)に関する2次方程式の解がすべて有理数となる条件は、判別式\(D\)が平方数であることだという。え~っと、2次方程式\(un{ x }^{ 2 }+bx+c=0\)の解は、解の公式を用いて次式で表される。 $$x=\frac { -b\pm \sqrt { { b }^{ 2 }-4ac } }{ 2un }= frac { -b\pm \sqrt { D } }{ 2un }\tag{1} $$ 有理数とは分数\(\frac { m }{ n } \)(\(m /)、\(n\)は整数、\(n\neq 0\))の形で表される数であるという。たしかに、\(a\)、\(b\)、\(c\)が整数のとき、\(\sqrt { D } \)が有理数なら\(x\)は有理数になる。\(\sqrt { D } \)が無理数なら有理数\(+\)無理数で\(x\)は無理数だな。Quant à moi $${ m }^{ 2 }-28={ l }^{ 2 }$$ (\(l\)は\(0\)以上の整数)とおいて、\(m /)の範囲を\(2\sqrt { 7 } \le m\le 14\)と見つけてから、総当たりで探していった。Toutefois,、回答を見るともっと簡単なやり方があったようだ。 $${ m }^{ 2 }-{ l }^{ 2 }=28$$ $$\left( m+l \right) \gauche( m-l \right) =28$$ として、\(m /)が自然数、\(l\)が\(0\)以上の整数であることと、\(m+l\)、\(m-l\)の差が偶数であり両者は奇数または偶数であることから、\(m+l=14\)、\(m-l=2\)と決まってしまうらしい。こっちのほうが分かりやすいな。 次は問13。A問題が終了ということで、ちょっと難しくなるのだろうか。まぁやっていこう。(1)は普通に計算すればいいな。(2)も $$ac+bd=1\tag{1}$$ $$ad-bc=0\tag{2}$$ これら2式に\(a\)、\(b\)、\(c\)、\(d\)をかけて足したり引いたりして変形すると答えが求まる。 そして問14。(1)は簡単。(2)は分からなくて迷った。ヒントには平方の差を作ると書いてあるが、う~ん?しばらく悩んだがやはり分からなかったので答えを見た。なんだ、そういうことだったのか。係数が実数の範囲で因数分解するとは下のようなことをすればよかったらしい。 $$\begin{eqnarray*}{ x }^{ 6 }+1&=&\gauche( { x }^{ 2 }+1…