Yanagawa, Takaaki (Rédigé par)
Nombre de publications de recherche (Maison d’édition)
2003Le 1er avril. (Date de sortie)
Couverture rigide (Format)
今日も場合の数の問題を解いていく。
まずは問15。
僕は次のようにして解いた。
Au début、回転して重なる場合も異なる図形であるとすると、全ての塗り分け方は\({ 2 }^{ 9 }=512\)通りある。
また回転しても形が変わらない塗り分け方を数えると8通りある。
さらに、回転したら形が2つになる塗り分け方は12通りある。
残りは回転したら形が4つになる塗り分け方である。
よってその塗り分け方は、
$$\frac { 512-\left( 8+2\times 12 \right) }{ 4 } =120$$
通りである。
これらから、求める答えは
$$8+12+120=140$$
Rue。
しかしこのやり方だと、回転したとき形が2つになる塗り分け方を数えるのが分かりにくい。
数えもれが出てしまう可能性が大だ。
解答例では9マスを中央の正方形と周りの4つの長方形に分けて計算していた。
長方形の塗り方は4通りで、この中から周りの4つの長方形がの塗り分け方が
- 1種類のとき
- 2種類のとき
- 3種類のとき
- 4種類のとき
を場合分けして考えればいいという。
そういうものか~
次は問16。
(1)、(2)は\(a=6\)なので南北方向の敷き詰め方は決まる。
あとは東西方向の長さに着目すればいい。
(3)Selon les conseils、まず辺ABに沿った部分から敷くと4通りが考えられる。
et、それらの場合の残り部分の敷き詰め方を考えればいい。
(1)、(2)のやり方も使って解いていくことになるが、僕は計算間違いをしてしまった。
なかなかミスが多くて困ったものだ。
その次は問17。
展開式の一般項は二項定理を用いて次式で表される。
$${ _{ m }{ C }_{ j } }{ \cdot _{ n }{ C }_{ k }{ x }^{ 2j+3k } }$$
Le reste\({ x }^{ 6 }\)Sur\(2j+3k=6\)を満たす\(0\)以上の整数\(\left( j,k \right) \)を考えればいい。
そうしたら\(m\)の範囲を求めて、それぞれの\(m\)Sur\(n\)が存在するかを考える。
これで(1)が解けた。
(1)が分かれば(2)は簡単に解ける。
最後に問18。
(1)は背理法を使うなりして簡単に解ける。
まぁ背理法を使わなくても解けるみたいだけどな。
(2)はヒントによると以下のようにするのがポイントみたいだ。
$$\left( { 2 }^{ p-1 }-1 \right) \times 2={ 2 }^{ p }-2={ \left( 1+1 \right) }^{ p }-2$$
\({ \left( 1+1 \right) }^{ p }\)に二項定理を利用すると、第1項と第p+1項がそれぞれ\(1\)ainsi、うまい具合に\(-2\)と打ち消しあう。
Le reste(1)を利用すれば素数\(p\)で割り切れると分かる。
\(\left( { 2 }^{ p-1 }-1 \right) \)に\(2\)をかけるところがコツだな~
きれいに解ける問題だったが、僕はヒントがなければ分からなかったような気がする。
とにかくこれで第1章「場合の数」の総合演習が終わった。
次回からは第2章「確率」の総合演習を解いていこう。
Articles connexes
- Formule graphique Mathématiques A Partie 6 [Probabilité] Yanagawa, Takaaki (Rédigé par)Nombre de publications de recherche (Maison d’édition)2003Le 1er avril. (Date de sortie)Couverture rigide (Format) 今回も解いていこう。まずは問23だ。二つのサイコロが違うもので(3)Et(4)peut être calculé comme indépendant de l’essai。Vient ensuite la question 24.。Il serait facile de penser à des événements postérieurs comme des indices。Et la question 25.。少なくとも1つという表現には余事象を考えればいいらしい。僕は場合分けして互いに排反として確率の加法定理で普通に解いた。あとは問26。(1)は反復試行の確率だ。(2)は期待値を求めればいいがヒントによると次のように表せるらしい。 $$ X=k \left(k=0, 1, 2, \cdots, n \right)のときの確率が{ _{ n }{ C }_{ K }{ P }^{ K }{ q }^{ n-k } }\quad \left(q=1-p \right) $$ $$ である変量Xの期待値はnpである $$ ここからはB問題だ。問27の(2)はさいころがちょうど3色で塗られている組み合わせは①(1面,1面,4面)、②(1面,2面,3面)、③(2面,2面,2面)être。使う3色の選び方は\(_{ 6 }{ C }_{ 3 } = 20\)通り。それぞれについて①の場合は\( 3 \times _{ 6 }{ C }_{ 4 } \times _{ 2 }{ C }_{ 1 } = 90\)通り。②の場合は\( 3! \times _{ 6 }{ C }_{ 3 } \times _{ 3 }{ C }_{ 2 } = 360\)通り。③の場合は\( _{ 6 }{ C }_{ 2 } \times _{ 4 }{ C }_{ 2 } \times _{…
- Graphique-mathématiques A part5 [probabilité] Yanagawa, Takaaki (Rédigé par)Nombre de publications de recherche (Maison d’édition)2003Le 1er avril. (Date de sortie)Couverture rigide (Format) Exercices complets de probabilité de résoudre ce problème。Tout d’abord, numéro 19。Selon la pointe est la base pour le calcul de la probabilité de tous les phénomènes «.(U\)の場合の数\(N\)Et、事象\(A\)の起こる場合の数\(a\)を求めて、\(P\left( A \right) = frac { un }{ N } \)とすることである。いま、さいころは異なるものと考えて、\(N={ 6 }^{ 4 }\)être。Le reste(1)Je vais(4)について\(a\)を考えればいい。特に注意が必要なのは(4)かな。僕は最初解いたときに確率\(P\left( A \right)\)が\(1\)を超えてしまい、間違いに気づいた。ちなみに\(a={ _{ 6 }{ C }_{ 1 } }{ \times _{ 5 }{ C }_{ 2 }\fois }{ _{ 4 }{ C }_{ 2 } }{ \times _{ 2 }{ C }_{ 1 } }\)と解けた。解答例とは違うやり方だが、同じ答えになる。 次は問20。円順列の問題だ。(2)、(3)で隣り合う人たちを1組と考えて円順列を計算するのがポイントかな。これは簡単だった。 その次は問21。(1)、(2)は簡単。(3)は独立試行の問題だ。独立な試行の確率は\(P\left( C \right) =P\left( A \right) P\left( B \right) \)と表されるので、普通に解けばいい。これも簡単だ。 最後は問22。これは反復試行の問題だ。反復試行の確率は次のようになるらしい。 $${ _{ n }{ C }_{ r }{ P }^{ r }{ q }^{ n-r } }\quad \left(ただしq=1-p \right) $$ あとは解ける、簡単簡単。と思ったら僕はこの問題を間違えてしまった。最後は必ず白玉を取り出さないといけなかったんだな。そうでないと、今の場合途中で白玉を3個取り出して、試行が終了してしまう。なるほどね。 今回はこれで終わり。僕は特に確率が得意というわけではないのだが、今日のこれらの問題は簡単だった。これはサクサク進むなぁ~意外と確率の問題は解きやすいのかもしれない。まぁまだA問題だから、徐々に難しくなるのかもしれないが。また次回やっていこう。
- Tableau math 1 part5 [chapitre équations et inéquations] Toshikazu Sunada (Rédigé par) Nombre de publications de recherche (Maison d’édition) 2003Le 1er avril. (Date de sortie) Couverture rigide (Format) 今日も進めていくぞ~。 問15からだ。 (1)は解の公式を利用して解を求め、誘導にしたがって因数分解すればいい。 (2)は\(P\left( x,y \right) =0\)を、\(x\)についての2次方程式と考えて解の公式で解く。 そして\(x=f\left( y \right) \)、\(x=g\left( y \right) \)とすると、\(P\left( x,y \right) =\left\{ x-f\left( y \right) \right\} \left\{ x-g\left( y \right) \right\} \)と因数分解できる。 Maintenant、\(P\left( x,y \right)\)が\(x\)、\(y\)についての1次式の積として表されるので、解の公式で求められた解の\(\sqrt { } \)内の\(y\)についての2次式が、\(y\)の1次式の平方数(2乗)の形にならないといけない。 このとき\(y\)についての2次式は重解をもち、判別式\(D=0\)être。 これから\(k\)が求まる。 最初は\(P\left( x,y \right) =0\)を\(x\)についての2次式とみて解を求め、次は出てきた解の\(y\)についての2次式に注目して判別式を利用するというおもしろい問題だった。 あと気になったのは $$x=\frac { -\gauche( 4+y \right) \pm \sqrt { { \gauche( 3y+2 \right) }^{ 2 } } }{ 2 } ,\frac { -\gauche( 4+y \right) \pm \sqrt { { \gauche( 3y-2 \right) }^{ 2 } } }{ 2 } $$ となったときの根号(\(\sqrt { } \))部分の計算についてだ。 通常は絶対値を付けて\(\gauche| 3y+2 \right| \)、\(\gauche| 3y-2 \right| \)とする。…