Yanagawa, Takaaki (Rédigé par)
Nombre de publications de recherche (Maison d’édition)
2003Le 1er avril. (Date de sortie)
Couverture rigide (Format)
Problèmes de mathématiques A pratique générale pour résoudre ce problème aujourd'hui ! ~
Tout d’abord est chapitre 1 « nombre de cas ».。
Continuer à regarder les conseils。
Question 1。
(1)Est-ce un nombre impair toujours bizarre parce que、5Compte tenu de la permutation Choisissez 3 numéros dans un nombre impair de pièces et le reste les choix de six numéros de deux permutations。
Et puis、Résoudre ce qui suit à l’aide de la règle du produit。
$${ _{ 5 }{ P }_{ 3 }\times }{ _{ 6 }{ P }_{ 2 }=1800 }$$
(2)Mais odd pense que quelque chose de bizarre toujours。
- Est impair.
- 2 est impair.
- 3 est impair.
Dans le cas de trois distincts。
Ces événements se produisent en même temps tellement de déchets dans les anti-。
En utilisant la loi de l’harmonie、Ajouter des garnitures à。
Question 2 est :。
Il s’agit de la condition.、Et un seul endroit des dizaines de milliers de\(0\)Vous ne pouvez jamais primer。
Voir aussi les conseils et、
(Si vous placez n’importe quel nombre impair)\(=\)(全体の場合の数)\(-\)(全ての位が偶数の場合の数)であると分かる。
さらに、偶数\(=\)偶数\(+\)偶数か、偶数\(=\)奇数\(+\)奇数である。
このようなことを考えれば解ける。
その次は問3だ。
(1)Le choisir environ 7 numéros 4, entier de 4 chiffres de côté、Pour trouver le numéro, par exemple supérieure à des milliers d’un nombre entier décimal。
Un millier\(0\)Mais notez qu’aucune、J’ai des milliers\(1\)Car si le、\(2\)De l’affaire. Considéré comme résolu.。
Plus facilement、Mille et une\(1\sim 6\)De 2 pièces、Un rang plus élevé、Petit semble être bon que mille。
Comment choisir le\({ _{ 6 }{ C }_{ 2 } }\)Rue。
Après avoir examiné les centaines et dizaines。
(2)Aussi j’ai(1)Et comme si elle et résolu.。
Mais selon les conseils、En tant qu’entier, supérieur à des centaines, classés 10e place、Parce que le même nombre est un entier supérieur à des dizaines de centaines classés、(Nombre entier)\(\div 2\)Semble être nécessaire ainsi。
Et c’est ce qui est quoi ?
(3)Selon les conseils、\(5310\)Pas un nombre entier supérieur à、\(531□ \)、\(532□ \)、\(534□ \)、\(536□ \)、\(54□□ \)、\(56□□\)、\(6□□□\)の場合をそれぞれ考えればよい。
さらに問4。
(1)Et(2)は組合せを考えればよく、簡単だ。
(3)を僕は間違えてしまった。
2つの頂点が正十角形\(A\)Le pinnacle、A propos de celle-ci est à l’intersection de la diagonale triangle、(2)Le semble être, selon moi un rectangle。
Vous pouvez demander de ce rectangle, un triangle a quatre。
Le reste(2)Dans une jolie place tenta de prendre。
C’est tout à fait ignorant de-。
Enfin q 5.。
Selon les conseils、Lorsque vous caresser、Point impair (l’itinéraire est un points impairs sont réunis) contiennent、Point de départ est une des choses bizarres、Ladite fin aux points impairs de l’autre。
Alors maintenant, si vous、Position de départ est de deux.。
Après anneau ou dessiner dans n’importe quel ordre ?、Bague vers le haut ou la réponse est nécessaire, envisager le tirage au sort à la fois dans le sens horaire et antihoraire。
Nombre total de la méthode de la course est dans la réponse est étonnamment bien impressionnant。
Oh, j’ai raté ce problème mais j’ai。
Aujourd'hui, ici.。
Aussi la prochaine fois nous。
Articles connexes
- Graphique-mathématiques A part3 [si le nombre] Yanagawa, Takaaki (Rédigé par)Nombre de publications de recherche (Maison d’édition)2003Le 1er avril. (Date de sortie)Couverture rigide (Format) A partir d’aujourd'hui chapitre 1 du laboratoire de recherche affaire B pour résoudre ce problème。Tout d’abord, à partir de 11.。(A)Des termes、正の整数\(m /)は\(2\)を素因数にもたず、\(9={ 3 }^{ 2 }\)を因数にもつと分かる。(1)は背理法で証明すればいい。\(m /)の正の約数で素数となるものが3つ以上あるとする。それらを\(3\)、\(p\)、\(q\)、…とする。ただし\(p\)、\(q\)、…は\(5\)以上の素数である。すると\(m /)は以下のように素因数分解される。 $$m={ 3 }^{ K }{ P }^{ un }{ q }^{ b }\cdot \cdots \quad \left( k\ge 2,\quad a\ge 1,\quad b\ge 1,\quad \cdots \right) $$ このとき\(m /)の正の約数の個数は次式で表される。 $$\gauche( k+1 \right) \gauche( a+1 \right) \gauche( b+1 \right) \cdots $$ Maintenant、これは\(12\)以上となり、条件(B)に適さない。よって\(m /)の正の約数で素数となるものは高々2個だ。なるほどな~ (2)は\(m /)の正の約数となる素数が、 \(3\)のみ \(3\)と\(5\)以上の素数\(p\) の場合の2通りを考えればいい。おもしろい問題だったな。 次は問12。(1)は、僕は以下の4通りに分けて計算して足し合わせて、暗証番号の総数から引いた。 同じ番号が2つずつの2組がある場合 同じ番号が2つの1組がある場合 同じ番号が3つ続く場合 同じ番号が4つ続く場合 だが、解答例を見ると同じ数字が続かない番号の個数ということで、\(10\times 9\times 9\times 9\)と簡単に求められるみたいだ。そういうものか。 (2)はヒントによると\(0\SIM 9\)は対等である。よって\(a=0\)の場合を数えて10倍すれば答えが出るらしい。解き方としては以下の3通りに分けて数え上げればいいとのことだ。 \(b=2\)Car si le \(b=8\)Car si le \(b=3,4,\cdots , 7\) Quant à moi、ヒントがないとこれは気付かなかっただろう。う~ん、難しいな。 その次は問13。同じものを含む順列の問題だ。(1)は(両端の文字が異なる)\(=)(全体)\(-\)(両端の文字が同じ)、として解けばいい。(2)は以下のように場合分けする。 文字が全て異なるとき 同じ文字2個を1組だけ含むとき 同じ文字を2個ずつ2組含むとき 同じ文字を3個含むとき この問題は解きやすいほうだったかな。 最後に問14。ヒントにあるように、\(x\)座標から\(S\)、\(T\)の回数の和が、\(y\)座標から\(S\)、\(T\)の回数の差が分かる。(2)、(3)について僕は樹形図を書いて解いた。そんなに複雑でないので力技でも解けるみたいだ。題意を満たすように解くと、点\(\gauche( 1,1 \right) \)から点\(\gauche( 7,1 \right) \)へ移る途中に、ある点Pで\(x\)軸上にあるとする。このとき、点P以降の経路で\(S\)と\(T\)を入れ替えると点\(\gauche( 7,-1 \right) \)に移ることを利用するという。\(S\)と\(T\)を入れ替えても、同じものを含む順列の個数は変わらないからな。点P以前の経路は共通でなので、(点P以前の経路の数)\(\fois \)(点P以降の経路の数)は等しい。結局点Pから\(x\)軸を通って点\(\gauche( 7,1 \right) \)へ移る場合と、点Pから点\(\gauche( 7,-1 \right) \)に移る場合は同じ場合の数となるみたい。ちょっと分かりにくい問題だった。 今日はこれで終わりにする。
- Formule graphique Mathématiques A Partie 6 [Probabilité] Yanagawa, Takaaki (Rédigé par)Nombre de publications de recherche (Maison d’édition)2003Le 1er avril. (Date de sortie)Couverture rigide (Format) 今回も解いていこう。まずは問23だ。二つのサイコロが違うもので(3)Et(4)peut être calculé comme indépendant de l’essai。Vient ensuite la question 24.。Il serait facile de penser à des événements postérieurs comme des indices。Et la question 25.。少なくとも1つという表現には余事象を考えればいいらしい。僕は場合分けして互いに排反として確率の加法定理で普通に解いた。あとは問26。(1)は反復試行の確率だ。(2)は期待値を求めればいいがヒントによると次のように表せるらしい。 $$ X=k \left(k=0, 1, 2, \cdots, n \right)のときの確率が{ _{ n }{ C }_{ K }{ P }^{ K }{ q }^{ n-k } }\quad \left(q=1-p \right) $$ $$ である変量Xの期待値はnpである $$ ここからはB問題だ。問27の(2)はさいころがちょうど3色で塗られている組み合わせは①(1面,1面,4面)、②(1面,2面,3面)、③(2面,2面,2面)être。使う3色の選び方は\(_{ 6 }{ C }_{ 3 } = 20\)通り。それぞれについて①の場合は\( 3 \times _{ 6 }{ C }_{ 4 } \times _{ 2 }{ C }_{ 1 } = 90\)通り。②の場合は\( 3! \times _{ 6 }{ C }_{ 3 } \times _{ 3 }{ C }_{ 2 } = 360\)通り。③の場合は\( _{ 6 }{ C }_{ 2 } \times _{ 4 }{ C }_{ 2 } \times _{…
- Graphique-mathématiques A part4 [si le nombre] Yanagawa, Takaaki (Rédigé par) Nombre de publications de recherche (Maison d’édition) 2003Le 1er avril. (Date de sortie) Couverture rigide (Format) 今日も場合の数の問題を解いていく。 まずは問15。 僕は次のようにして解いた。 Au début、回転して重なる場合も異なる図形であるとすると、全ての塗り分け方は\({ 2 }^{ 9 }=512\)通りある。 また回転しても形が変わらない塗り分け方を数えると8通りある。 さらに、回転したら形が2つになる塗り分け方は12通りある。 残りは回転したら形が4つになる塗り分け方である。 よってその塗り分け方は、 $$\frac { 512-\gauche( 8+2\fois 12 \right) }{ 4 } =120$$ 通りである。 これらから、求める答えは $$8+12+120=140$$ 通りだ。 しかしこのやり方だと、回転したとき形が2つになる塗り分け方を数えるのが分かりにくい。 数えもれが出てしまう可能性が大だ。 解答例では9マスを中央の正方形と周りの4つの長方形に分けて計算していた。 長方形の塗り方は4通りで、この中から周りの4つの長方形がの塗り分け方が 1種類のとき 2種類のとき 3種類のとき 4種類のとき を場合分けして考えればいいという。 そういうものか~ 次は問16。 (1)、(2)は\(a=6\)なので南北方向の敷き詰め方は決まる。 あとは東西方向の長さに着目すればいい。 (3)Selon les conseils、まず辺ABに沿った部分から敷くと4通りが考えられる。 et、それらの場合の残り部分の敷き詰め方を考えればいい。 (1)、(2)のやり方も使って解いていくことになるが、僕は計算間違いをしてしまった。 なかなかミスが多くて困ったものだ。 その次は問17。 展開式の一般項は二項定理を用いて次式で表される。 $${ _{ m }{ C }_{ j } }{ \cdot _{ n }{ C }_{ K }{ x }^{ 2j+3k } }$$ あとは\({ x }^{ 6 }\)について\(2j+3k=6\)を満たす\(0\)以上の整数\(\gauche( j,k \right) \)を考えればいい。 そうしたら\(m /)の範囲を求めて、それぞれの\(m /)について\(n\)が存在するかを考える。 これで(1)が解けた。 (1)が分かれば(2)は簡単に解ける。 最後に問18。 (1)は背理法を使うなりして簡単に解ける。 まぁ背理法を使わなくても解けるみたいだけどな。 (2)はヒントによると以下のようにするのがポイントみたいだ。 $$\gauche( { 2 }^{ p-1 }-1 \right) \fois…