Toshikazu Sunada (Rédigé par)
Nombre de publications de recherche (Maison d’édition)
2003Le 1er avril. (Date de sortie)
Couverture rigide (Format)
今日も解いていくぞ~。
問43からだ。
Maintenant、\(\left( b+c \right) :\left( c+a \right) :\left( a+b \right) =4:5:6\)であるという。
ヒントにしたがって、\(\left( b+c \right) =4k\)、\(\left( c+a \right) =5k\)、\(\left( a+b \right) =6k\)(\(k>0\))とおく。
そしてこの連立方程式を解くと\(a\)、\(b\)、\(c\)が\(k\)で表される。
Le reste\(\triangle ABC\)について正弦定理と余弦定理を使うと答えが求められる。
次は問44。
余弦定理と面積を求める公式を使えばいい。
これは簡単だ。
その次は問45。
これも正弦定理や余弦定理、面積の公式を用いて解いていけばいい。
円に内接する四角形の対角をたすと\(180°\)になることに注意だな。
まぁ簡単。
そして問46。
四角錐についての問題だ。
実際に図を描いてみて、断面で切って平面図形を取り出して解くことになる。
僕は余弦定理、面積の公式を使って解いた。
Aussi、三角錐の体積は\(底面積\times 高さ\times \frac { 1 }{ 3 } \)であることなどを思い出した。
念のため、三角形の相似条件を復習のためまとめておく。
三角形の相似条件は
- 3組の辺の比が全て等しい
- 2組の辺の比とその間の角がそれぞれ等しい
- 2組の角がそれぞれ等しい
être。
一般的に平面図形(立体)が相似である場合、
- 対応する線分の長さの比はすべて等しい
- 対応する角の大きさはすべて等しい
ということが成り立つらしい。
最後に問47。
相似比が\(m:n\)である図形の面積の比は\({ m }^{ 2 }:{ n }^{ 2 }\)、相似比が\(m:n\)である立体の体積の比は\({ m }^{ 3 }:{ n }^{ 3 }\)être。
また三角柱の体積は\(底面積\times 高さ \)être。
これらから(1)は求められる。
次は(2)Mais、これを僕は間違ってしまった。
四角柱を半分に切って三角柱を作って…みたいな計算をしたのだが、これではうまくいかないんだな。
体積が半分とは限らないみたいだ。
線分ADの延長と線分BGの延長の交点をIなどとして、三角錐I-ABC、三角錐I-DGH、三角錐A-DGHに着目すればいいとのことだ。
そういう風に解くのか~。
これで総合演習のA問題が終わった。
次回からB問題を解いていこう。
難しくなるかな?
Articles connexes
- Graphique 15 math 1 [forme et pesant] Toshikazu Sunada (Rédigé par) Nombre de publications de recherche (Maison d’édition) 2003Le 1er avril. (Date de sortie) Couverture rigide (Format) 今日も解いていきます。 問48からだ。 ヒントにあるように\(\Sin { \Thêta } =\tan { \Thêta } \COS { \Thêta } \)に気づくと、\(f\left( \theta \right) \)が積の形に変形できるので、これを利用する。 (1)は普通に解けばいい。 (2)は\(f\left( \theta \right)<0 \)ainsi、積の2つの項が\(0\)より大きいものと小さいものである場合である。 あとは\(0°<\Thêta <180°\)(ただし\(\theta \neq 90°\))のとき、\(\tan { \Thêta } <1\)となるのは\(0°<\Thêta <45°\)、\(90°<\Thêta <180°\)に注意して解くといい。 僕はうっかりミスしてしまった。 気をつけないといけないな。 次は問49。 これは $$\sin ^{ 2 }{ x } +\COS ^{ 2 }{ x } =1$$ $$\sin ^{ 2 }{ y } +\COS ^{ 2 }{ y } =1$$ という公式を使うと、変数が4つで式が4本になるので連立させていくと方程式が解ける。 僕は以下のような三角関数の合成の公式を使って解いた。 $$a\sin { \Thêta } +b cos { \Thêta } =\sqrt { { un }^{ 2 }+{ b }^{ 2 } } \Sin { \gauche( \theta +\alpha…
- Formule graphique Mathématiques A Partie 6 [Probabilité] Yanagawa, Takaaki (Rédigé par)Nombre de publications de recherche (Maison d’édition)2003Le 1er avril. (Date de sortie)Couverture rigide (Format) 今回も解いていこう。まずは問23だ。二つのサイコロが違うもので(3)Et(4)peut être calculé comme indépendant de l’essai。Vient ensuite la question 24.。Il serait facile de penser à des événements postérieurs comme des indices。Et la question 25.。少なくとも1つという表現には余事象を考えればいいらしい。僕は場合分けして互いに排反として確率の加法定理で普通に解いた。あとは問26。(1)は反復試行の確率だ。(2)は期待値を求めればいいがヒントによると次のように表せるらしい。 $$ X=k \left(k=0, 1, 2, \cdots, n \right)のときの確率が{ _{ n }{ C }_{ K }{ P }^{ K }{ q }^{ n-k } }\quad \left(q=1-p \right) $$ $$ である変量Xの期待値はnpである $$ ここからはB問題だ。問27の(2)はさいころがちょうど3色で塗られている組み合わせは①(1面,1面,4面)、②(1面,2面,3面)、③(2面,2面,2面)être。使う3色の選び方は\(_{ 6 }{ C }_{ 3 } = 20\)通り。それぞれについて①の場合は\( 3 \times _{ 6 }{ C }_{ 4 } \times _{ 2 }{ C }_{ 1 } = 90\)通り。②の場合は\( 3! \times _{ 6 }{ C }_{ 3 } \times _{ 3 }{ C }_{ 2 } = 360\)通り。③の場合は\( _{ 6 }{ C }_{ 2 } \times _{ 4 }{ C }_{ 2 } \times _{…
- Tableau math 1 part5 [chapitre équations et inéquations] Toshikazu Sunada (Rédigé par) Nombre de publications de recherche (Maison d’édition) 2003Le 1er avril. (Date de sortie) Couverture rigide (Format) 今日も進めていくぞ~。 問15からだ。 (1)は解の公式を利用して解を求め、誘導にしたがって因数分解すればいい。 (2)は\(P\left( x,y \right) =0\)を、\(x\)についての2次方程式と考えて解の公式で解く。 そして\(x=f\left( y \right) \)、\(x=g\left( y \right) \)とすると、\(P\left( x,y \right) =\left\{ x-f\left( y \right) \right\} \left\{ x-g\left( y \right) \right\} \)と因数分解できる。 Maintenant、\(P\left( x,y \right)\)が\(x\)、\(y\)についての1次式の積として表されるので、解の公式で求められた解の\(\sqrt { } \)内の\(y\)についての2次式が、\(y\)の1次式の平方数(2乗)の形にならないといけない。 このとき\(y\)についての2次式は重解をもち、判別式\(D=0\)être。 これから\(k\)が求まる。 最初は\(P\left( x,y \right) =0\)を\(x\)についての2次式とみて解を求め、次は出てきた解の\(y\)についての2次式に注目して判別式を利用するというおもしろい問題だった。 あと気になったのは $$x=\frac { -\gauche( 4+y \right) \pm \sqrt { { \gauche( 3y+2 \right) }^{ 2 } } }{ 2 } ,\frac { -\gauche( 4+y \right) \pm \sqrt { { \gauche( 3y-2 \right) }^{ 2 } } }{ 2 } $$ となったときの根号(\(\sqrt { } \))部分の計算についてだ。 通常は絶対値を付けて\(\gauche| 3y+2 \right| \)、\(\gauche| 3y-2 \right| \)とする。…