Toshikazu Sunada (Rédigé par)
Nombre de publications de recherche (Maison d’édition)
2003Le 1er avril. (Date de sortie)
Couverture rigide (Format)
Chapitre 3 forme et son poids de。
Réglons d’un laboratoire de recherche。
C’est comme la trigonométrie ou apparaissent。
Tout d’abord, les questions 38。
J’ai transformé l’expression à l’aide de divers officiels et résolu.。
Quelque chose comme ce qui suit。
$$\sin ^{ 2 }{ \alpha =\frac { 1-\cos { 2\alpha } }{ 2 } } $$
$$\cos ^{ 2 }{ \alpha =\frac { 1+\cos { 2\alpha } }{ 2 } } $$
$$\sin { \left( 90°-\alpha \right) } =\cos { \alpha } $$
$$\cos { \left( 90°-\alpha \right) } =\sin { \alpha } $$
Mais、Maintenant\(\alpha =22.5°\)ainsi\(3\alpha =90°-\alpha \)、\(5\alpha =180°-3\alpha \)、\(7\alpha =180°-\alpha \)Dans une note qui、L’expression est\(\sin { \alpha } \)、\(\cos { \alpha } \)Représenté que par、Il semble plus facile。
Les questions suivantes 39。
À l’aide de la formule suivante、Transformer et si tout va bien il peut être résolu facilement。
$$\sin ^{ 2 }{ \theta + } \cos ^{ 2 }{ \theta =1 } $$
$${ a }^{ 3 }+{ b }^{ 3 }={ \left( a+b \right) }^{ 3 }-3ab\left( a+b \right) $$
Et q 40.。
Cette équation a été donnée、\(\sin { \theta } \)Sur la forme quadratique。
Le reste\(\sin { \theta } =t\)Et garder、\(t\)の範囲に気をつけて最大値を求めればいい。
簡単簡単。
その次は問41だ。
これは正弦定理、加法定理を使って計算すればいいだろう。
使った公式は以下のようなものだ。
$$\frac { a }{ \sin { A } }= \frac { b }{ \sin { B } }= \frac { c }{ \sin { C } } =2R$$
$$\sin { \left( \alpha +\beta \right) =\sin { \alpha } \cos { \beta } +\cos { \alpha } \sin { \beta } } $$
D’un autre côté、解答例では頂点Aから対角線BDに垂線を下して計算していた。
Ce premier théorème du cosinus et il semble。
$$a=b\cos { C } +c\cos { B } $$
$$a=c\cos { A } +a\cos { C } $$
$$a=a\cos { B } +b\cos { A } $$
Je voudrais faire。
Dans le dernier numéro 42。
Formule du ciel pour l’aire d’un triangle et le théorème du cosinus (second théorème du cosinus) avec et résolu.。
C’est officiel, tel que le suivant。
$$S=\frac { 1 }{ 2 } bc\sin { A } =\frac { 1 }{ 2 } ca\sin { B } =\frac { 1 }{ 2 } ab\sin { C } $$
$${ a }^{ 2 }={ b }^{ 2 }+{ c }^{ 2 }-2bc\cos { A } $$
$${ b }^{ 2 }={ c }^{ 2 }+{ a }^{ 2 }-2ca\cos { B } $$
$${ c }^{ 2 }={ a }^{ 2 }+{ b }^{ 2 }-2ab\cos { C } $$
Utilisez le caractère de la bissectrice de l’angle dans la casse appropriée, avait résolu la。
\(\angle A\)の二等分線がADのとき、\(BD:CD=AB:AC\)Guy a dit。
Je vois。
今日はここで終わりにしよう。
A問題ということでまだまだ今回は簡単だったな。
Articles connexes
- Tableau math 1 part4 [chapitre équations et inéquations] Toshikazu Sunada (Rédigé par)Nombre de publications de recherche (Maison d’édition)2003Le 1er avril. (Date de sortie)Couverture rigide (Format) 今日も解いていきます。問12からだ。ヒントによると\(x\)に関する2次方程式の解がすべて有理数となる条件は、判別式\(D\)が平方数であることだという。え~っと、2次方程式\(un{ x }^{ 2 }+bx+c=0\)の解は、解の公式を用いて次式で表される。 $$x=\frac { -b\pm \sqrt { { b }^{ 2 }-4ac } }{ 2un }= frac { -b\pm \sqrt { D } }{ 2un }\tag{1} $$ 有理数とは分数\(\frac { m }{ n } \)(\(m /)、\(n\)は整数、\(n\neq 0\))の形で表される数であるという。たしかに、\(a\)、\(b\)、\(c\)が整数のとき、\(\sqrt { D } \)が有理数なら\(x\)は有理数になる。\(\sqrt { D } \)が無理数なら有理数\(+\)無理数で\(x\)は無理数だな。Quant à moi $${ m }^{ 2 }-28={ l }^{ 2 }$$ (\(l\)は\(0\)以上の整数)とおいて、\(m /)の範囲を\(2\sqrt { 7 } \le m\le 14\)と見つけてから、総当たりで探していった。Toutefois,、回答を見るともっと簡単なやり方があったようだ。 $${ m }^{ 2 }-{ l }^{ 2 }=28$$ $$\left( m+l \right) \gauche( m-l \right) =28$$ として、\(m /)が自然数、\(l\)が\(0\)以上の整数であることと、\(m+l\)、\(m-l\)の差が偶数であり両者は奇数または偶数であることから、\(m+l=14\)、\(m-l=2\)と決まってしまうらしい。こっちのほうが分かりやすいな。 次は問13。A問題が終了ということで、ちょっと難しくなるのだろうか。まぁやっていこう。(1)は普通に計算すればいいな。(2)も $$ac+bd=1\tag{1}$$ $$ad-bc=0\tag{2}$$ これら2式に\(a\)、\(b\)、\(c\)、\(d\)をかけて足したり引いたりして変形すると答えが求まる。 そして問14。(1)は簡単。(2)は分からなくて迷った。ヒントには平方の差を作ると書いてあるが、う~ん?しばらく悩んだがやはり分からなかったので答えを見た。なんだ、そういうことだったのか。係数が実数の範囲で因数分解するとは下のようなことをすればよかったらしい。 $$\begin{eqnarray*}{ x }^{ 6 }+1&=&\gauche( { x }^{ 2 }+1…
- Tableau math 1 part5 [chapitre équations et inéquations] Toshikazu Sunada (Rédigé par) Nombre de publications de recherche (Maison d’édition) 2003Le 1er avril. (Date de sortie) Couverture rigide (Format) 今日も進めていくぞ~。 問15からだ。 (1)は解の公式を利用して解を求め、誘導にしたがって因数分解すればいい。 (2)は\(P\left( x,y \right) =0\)を、\(x\)についての2次方程式と考えて解の公式で解く。 そして\(x=f\left( y \right) \)、\(x=g\left( y \right) \)とすると、\(P\left( x,y \right) =\left\{ x-f\left( y \right) \right\} \left\{ x-g\left( y \right) \right\} \)と因数分解できる。 Maintenant、\(P\left( x,y \right)\)が\(x\)、\(y\)についての1次式の積として表されるので、解の公式で求められた解の\(\sqrt { } \)内の\(y\)についての2次式が、\(y\)の1次式の平方数(2乗)の形にならないといけない。 このとき\(y\)についての2次式は重解をもち、判別式\(D=0\)être。 これから\(k\)が求まる。 最初は\(P\left( x,y \right) =0\)を\(x\)についての2次式とみて解を求め、次は出てきた解の\(y\)についての2次式に注目して判別式を利用するというおもしろい問題だった。 あと気になったのは $$x=\frac { -\gauche( 4+y \right) \pm \sqrt { { \gauche( 3y+2 \right) }^{ 2 } } }{ 2 } ,\frac { -\gauche( 4+y \right) \pm \sqrt { { \gauche( 3y-2 \right) }^{ 2 } } }{ 2 } $$ となったときの根号(\(\sqrt { } \))部分の計算についてだ。 通常は絶対値を付けて\(\gauche| 3y+2 \right| \)、\(\gauche| 3y-2 \right| \)とする。…
- チャート式 数学1 part10【2次関数編】 Toshikazu Sunada (Rédigé par)Nombre de publications de recherche (Maison d’édition)2003Le 1er avril. (Date de sortie)Couverture rigide (Format) 今日も2次関数のB問題を進めていこう。問30からだ。(1)は普通に場合分けをして絶対値を外せばいい。(2)がこの問題のポイントとなるところだろう。【1】\(x\ge a\)のとき、\(a\ge \frac { 1 }{ 2 } \)の場合と\(un<\frac { 1 }{ 2 } \)の場合で最小値\(m\left( a \right) \)が異なるので、場合分けする。同様に【2】\(x<a\)のときは、\(un>-\frac { 1 }{ 2 } \)の場合と\(a\le -\frac { 1 }{ 2 } \)の場合で場合分けが必要だ。そしたら\(a\ge \frac { 1 }{ 2 } \)、\(-\frac { 1 }{ 2 } <un<\frac { 1 }{ 2 } \)、\(a\le -\frac { 1 }{ 2 } \)の場合で【1】と【2】のそれぞれの差をとってどちらがより小さいかを明らかにし、関数\(f\left( x \right) \)の最小値\(m\left( a \right) \)を求めることになる。僕はグラフを見てなんとなく直感で解いたが、それではダメだったんだな。しっかり場合分けが必要みたいだ。(3)は(2)がちゃんと解けていれば簡単だ。 次は問31。Premier(1)。今\(a\)、\(b\)、\(x\)、\(y\)全てが正の実数なので、以下の不等式 $$\frac { x }{ un } \le \frac { y }{ b } $$ の両辺に\(ab\)をかけたり、2乗したりしても、不等号の向きは変わらないし、通常は2乗することで生じる余計な解が含まれることもない。あとは条件式を利用して\({ y }^{ 2 }\)を消去すればいい。(2)は(1)から\(0\le x\le \frac { un }{ \sqrt { { un }^{…