Toshikazu Sunada (Rédigé par)
Nombre de publications de recherche (Maison d’édition)
2003Le 1er avril. (Date de sortie)
Couverture rigide (Format)
今回も解いていく。
今日は問33からだ。
絶対値がたくさんついている。
僕はヒントに従って、\(N=2\)のときと\(N=3\)のときを計算してみて、Le reste\(N\)が偶数と奇数の場合に分けて、なんとなく答えを出した。
Toutefois,、正答を見てみると、以下のように回答していた。
$${ a }_{ k }\le x\le { a }_{ k+1 }\quad \left( k=1,2,\cdot \cdot \cdot \cdot \cdot \cdot ,N-1 \right) のとき$$
$$f\left( x \right) =\left( -N+2k \right) x-{ a }_{ 1 }-{ a }_{ 2 }-\cdot \cdot \cdot \cdot \cdot \cdot -{ a }_{ k }+{ a }_{ k+1 }+\cdot \cdot \cdot \cdot \cdot \cdot +{ a }_{ N }$$
Le reste\(N\)が偶数の場合と奇数の場合で、\(-N+2k\)が正か負か0かに着目してグラフの形を考えてみれば解けるみたい。
こうやってしっかり解かないといけなかったみたいだ。
数学2の単調増加、単調減少の考え方も入っているのかな。
次は問34。
(1)はまず、2次方程式が異なる実数の2解を持つように判別式\(D>0\)とすればいい。
そして共通解を\(x=\alpha \)Et garder、2本の2次方程式に代入して計算すると、\({ \alpha }^{ 2 }\)の項がうまい具合に消えて、\(\alpha=1\)と分かる。
これで\(a\)の範囲が求められる。
(2)は\(f\left( x \right) ={ x }^{ 2 }+ax+4\)、\(g\left( x \right) ={ x }^{ 2 }+4x+\alpha \)Et garder、グラフを書いてみる。
Le reste\(f\left( x \right)\)Et\(g\left( x \right)\)が\(x=1\)で交わることに注意してグラフから実数解の大小を考えればいいだろう。
そして問35。
\(x\)Et\(p\)で表される放物線と三角形が交わるような実数\(p\)の範囲を求めよという問題だ。
僕はまずヒントにしたがって放物線が三角形の各頂点を通るときの\(p\)を求めた。
Le reste\(f\left( x \right) ={ \left( x-p \right) }^{ 2 }-2\)とおいて、各\(p\)の範囲において\(f\left( 0 \right) \)Et\(f\left( 1 \right) \)の大きさに着目して、三角形の辺と交わるかを調べた。
ちょっと面倒だったが、解けた。
正答例ではグラフで図示して、放物線と三角形が交わる場合を調べて解いていた。
こっちのほうが分かりやすいかもな。
2次関数の総合演習はあと2問ということで、次回で終わるだろう。
今回はここまで~。
Articles connexes
- Tableau math 1 part6 [fonction quadratique] Toshikazu Sunada (Rédigé par) Nombre de publications de recherche (Maison d’édition) 2003Le 1er avril. (Date de sortie) Couverture rigide (Format) 今日から2次関数の総合演習をやっていこう。 問18からだ。 (1)は普通に計算すればいい。 (2)は2次関数を\(x\)軸方向に\(q\)、\(y\)軸方向に\(-2\)だけ平行移動し、原点に対して対称移動せよという。 これは\(x\)を\(x-q\)、\(y\)を\(y+2\)とした後で、\(x\)を\(-x\)、\(y\)を\(-y\)とおけばOKだ。 次は問19。 条件から\(z\)を消去して\(x\)の2次式とみて平方完成する。 さらに得られた頂点を\(y\)の2次式とみて平方完成すれば最小値が求まるみたいだ。 そういうものか。 うまくできているんだな。 別解では下のように計算していた。 $$\begin{eqnarray*}{ x }^{ 2 }+4{ y }^{ 2 }+9{ z }^{ 2 }&=&{ \gauche( x-\frac { 1 }{ 3 } \right) }^{ 2 }+{ \gauche( 2y-\frac { 1 }{ 3 } \right) }^{ 2 }+{ \gauche( 3z-\frac { 1 }{ 3 } \right) }^{ 2 }\\ &+&2\cdot \frac { 1 }{ 3 } \gauche( x+2y+3z \right) -3{ \gauche( \frac { 1 }{ 3 } \right) }^{ 2 }\end{eqnarray*}$$ こうすると\(x+2y+3z=1\)を満たすようにうまいぐあいに平方完成される。 でもこれはなかなか思いつかないな~。 あとはインターネットで調べてみたら\(Y=2y\)、\(Z=3z\)とおいて、3次元の平面と原点を中心とする球の関係に帰着させて解いている人がいた。 このWebサイトに書かれていた。 平面と球が接するとき球の半径は最少になるので、あとは距離の公式とかベクトルを使って解けるみたい。 なるほどな~。 数学Bのベクトルに進んだ頃にまた考えてみるか。 そして問20。 これは\(a\)の範囲で場合分けして、最大値\(G\left( a \right)…
- Tableau math 1 part7 [fonction quadratique] Toshikazu Sunada (Rédigé par) Nombre de publications de recherche (Maison d’édition) 2003Le 1er avril. (Date de sortie) Couverture rigide (Format) 今日も2次関数の総合演習を解いていこう。 問21からだ。 これは2つの絶対値に気をつけて場合分けして\(g\left( x \right) \)をグラフに図示する。 そして\(0<c<1\)のとき\(g\left( x \right) =c\)を満たす\(x\)を求めればいい。 次は問22。 (1)は2本の方程式を連立させて、\(x\)の2次方程式が判別式\(D=0\)となるとき、\({ C }_{ 1 }\)、\({ C }_{ 2 }\)がただ1つの共有点をもつ。 (2)も点\(P\)を通る直線が\({ C }_{ 1 }\)、\({ C }_{ 2 }\)と接するので、連立させて判別式\(D=0\)から求めればいい。 そして問23。 (1)、(2)は普通に解けばいいだろう。 (3)は解の公式から求められた2解の差が\(2\)であればいい。 \(D>0\)に気をつけて計算すれば\(p\)、\(q\)が求められて頂点の座標が求まる。 今日はこれで終わり~。
- Diagramme part16 math 1 [forme et pesant] Toshikazu Sunada (Rédigé par)Nombre de publications de recherche (Maison d’édition)2003Le 1er avril. (Date de sortie)Couverture rigide (Format) 今日で第3章「図形と計量」が終わりだ。つまりはこの問題集「チャート式 数学1」が終わりということになる。最後なのでがんばっていこう。 まずは問52。4辺の長さが分かっているが、角度が分からない凸四角形ABCDについて、\(\triangle \)ABDの面積を\(S\)、\(\triangle \)BCDの面積を\(T\)とする。(1)は\({ S }^{ 2 }+{ T }^{ 2 }\)のとりうる値の範囲を求めよという問題だ。ヒントにあるように\(\angle DAB=\alpha \)とおくと、余弦定理や面積の公式などから\({ S }^{ 2 }+{ T }^{ 2 }\)は\(\COS { \Alpha } \)の2次式として表される。あとは\(\COS { \Alpha } = t /)Et garder、計算すればいい。 ただここで問題なのは\(\Alpha \)の範囲である。条件としては四角形ABCDが凸四角形であるということだ。ヒントによると凸四角形とは内角が4つとも\(180°\)より小さい四角形だという。Que veux-tu dire、四角形の4つの角について以下が成り立つ。 $$0°<\angle A,\angle B,\angle C,\angle D<180°$$ $$\angle A+\angle B+\angle C+\angle D=360°$$ また、余弦定理から以下の関係も求められる。 $$\COS { \angle C } =-1+\sqrt { 3 } \COS { \angle A } $$ $$\COS { \angle D } =-1+\sqrt { 3 } \COS { \angle B } $$ 他にも正弦定理からも方程式が求められる…となんとか\(\angle A=\alpha\)の範囲を計算しようと思ったが、あまりに面倒なのでやめた… 次に僕は三角形の成立条件を考えてみた。 $$\gauche| b-c \right| <un<b+c$$ という三角形の辺の関係式だ。しかしこれだと\(0°<\Alpha <90°\)となってしまうのだ。正答は\(30°<\Alpha <90°\)être。やはり今回は凸四角形の条件ということで、三角形の成立条件ではうまくいかないみたいだ。三角形の成立条件だけだと、ブーメランみたいな形の四角形でもOKということになってしまうからな。 解答例によると実際に図示してみて考えるといいらしい。今回は\(\angle C\)および\(\angle D\)が\(180°\)となるときに、うまいこと四角形ABCDが直角三角形になる。これにより\(\alpha\)の範囲が求められるという。計算ではなかなか範囲を求めるのは難しいので、図を描いてみるというのが正解だったんだな~…(1)が分かれば(2)は簡単だ。 次は問53。正五角形についての問題だ。これはヒントにあるように、正五角形\(F\)と正五角形\(G\)が相似のとき、長さが\(k\)倍なら面積は\({ K }^{ 2 }\)倍であることを利用すればいいみたい。平面図形がなんであれ、相似なら面積は\({ K…