Toshikazu Sunada (Rédigé par)
Nombre de publications de recherche (Maison d’édition)
2003Le 1er avril. (Date de sortie)
Couverture rigide (Format)
今日も2次関数のB問題を進めていこう。
問30からだ。
(1)は普通に場合分けをして絶対値を外せばいい。
(2)がこの問題のポイントとなるところだろう。
【1】\(x\ge a\)のとき、\(a\ge \frac { 1 }{ 2 } \)の場合と\(a<\frac { 1 }{ 2 } \)の場合で最小値\(m\left( a \right) \)が異なるので、場合分けする。
同様に【2】\(x<a\)のときは、\(a>-\frac { 1 }{ 2 } \)の場合と\(a\le -\frac { 1 }{ 2 } \)の場合で場合分けが必要だ。
そしたら\(a\ge \frac { 1 }{ 2 } \)、\(-\frac { 1 }{ 2 } <a<\frac { 1 }{ 2 } \)、\(a\le -\frac { 1 }{ 2 } \)の場合で【1】と【2】のそれぞれの差をとってどちらがより小さいかを明らかにし、fonction\(f\left( x \right) \)の最小値\(m\left( a \right) \)を求めることになる。
僕はグラフを見てなんとなく直感で解いたが、それではダメだったんだな。
しっかり場合分けが必要みたいだ。
(3)は(2)がちゃんと解けていれば簡単だ。
次は問31。
Premier(1)。
Maintenant\(a\)、\(b\)、\(x\)、\(y\)全てが正の実数なので、以下の不等式
$$\frac { x }{ a } \le \frac { y }{ b } $$
の両辺に\(ab\)をかけたり、2乗したりしても、不等号の向きは変わらないし、通常は2乗することで生じる余計な解が含まれることもない。
あとは条件式を利用して\({ y }^{ 2 }\)を消去すればいい。
(2)は(1)から\(0\le x\le \frac { a }{ \sqrt { { a }^{ 3 }+{ b }^{ 3 } } } \)のとき、\(\min { \left\{ \frac { x }{ a } ,\frac { y }{ b } \right\} } =\frac { x }{ a } \)être。
Aussi(1)と同様に\(0\le y\le \frac { b }{ \sqrt { { a }^{ 3 }+{ b }^{ 3 } } } \)のとき、\(\min { \left\{ \frac { x }{ a } ,\frac { y }{ b } \right\} } =\frac { y }{ b } \)となる。
これより最大値を求めればいいだろう。
そして問32。
これはおもしろい問題だった。
ヒントにあるように、条件(A)から、ある実数\(a\)に対して\(f\left( a \right) <0\)が成り立つとき、\(f\left( x \right)\)の最小値\(<0\)être。
また条件(B)から、任意の整数\(n\)に対して\(f\left( n \right) \ge 0\)となるとき、最小値を与える\(x\)に最も近い整数\(x\)et\(f\left( x \right) \ge 0\)être。
\(p\)、\(q\)が素数であることに注意して計算していくと以下の不等式が導かれる。
$${ p }^{ 2 }-1\le 4q< p^{ 2 }\tag{1}$$
(1)式から\(4q={ p }^{ 2 }-1\)と求められる。
したがって、
$$q=\frac { p-1 }{ 2 } \cdot \frac { p+1 }{ 2 } $$
となり、\(\frac { p-1 }{ 2 } \)、\(\frac { p+1 }{ 2 } \)は連続した2つの整数で、\(q\)は素数であるから、\(q=2\)、\(p=3\)となる。
なるほどな~。
総合演習Bはやっぱり少し難しくなっているみたい。
Articles connexes
- Graphique 15 math 1 [forme et pesant] Toshikazu Sunada (Rédigé par) Nombre de publications de recherche (Maison d’édition) 2003Le 1er avril. (Date de sortie) Couverture rigide (Format) 今日も解いていきます。 問48からだ。 ヒントにあるように\(\Sin { \Thêta } =\tan { \Thêta } \COS { \Thêta } \)に気づくと、\(f\left( \theta \right) \)が積の形に変形できるので、これを利用する。 (1)は普通に解けばいい。 (2)は\(f\left( \theta \right)<0 \)ainsi、積の2つの項が\(0\)より大きいものと小さいものである場合である。 あとは\(0°<\Thêta <180°\)(ただし\(\theta \neq 90°\))のとき、\(\tan { \Thêta } <1\)となるのは\(0°<\Thêta <45°\)、\(90°<\Thêta <180°\)に注意して解くといい。 僕はうっかりミスしてしまった。 気をつけないといけないな。 次は問49。 これは $$\sin ^{ 2 }{ x } +\COS ^{ 2 }{ x } =1$$ $$\sin ^{ 2 }{ y } +\COS ^{ 2 }{ y } =1$$ という公式を使うと、変数が4つで式が4本になるので連立させていくと方程式が解ける。 僕は以下のような三角関数の合成の公式を使って解いた。 $$a\sin { \Thêta } +b cos { \Thêta } =\sqrt { { un }^{ 2 }+{ b }^{ 2 } } \Sin { \gauche( \theta +\alpha…
- Tableau math 1 part5 [chapitre équations et inéquations] Toshikazu Sunada (Rédigé par) Nombre de publications de recherche (Maison d’édition) 2003Le 1er avril. (Date de sortie) Couverture rigide (Format) 今日も進めていくぞ~。 問15からだ。 (1)は解の公式を利用して解を求め、誘導にしたがって因数分解すればいい。 (2)は\(P\left( x,y \right) =0\)を、\(x\)についての2次方程式と考えて解の公式で解く。 そして\(x=f\left( y \right) \)、\(x=g\left( y \right) \)とすると、\(P\left( x,y \right) =\left\{ x-f\left( y \right) \right\} \left\{ x-g\left( y \right) \right\} \)と因数分解できる。 Maintenant、\(P\left( x,y \right)\)が\(x\)、\(y\)についての1次式の積として表されるので、解の公式で求められた解の\(\sqrt { } \)内の\(y\)についての2次式が、\(y\)の1次式の平方数(2乗)の形にならないといけない。 このとき\(y\)についての2次式は重解をもち、判別式\(D=0\)être。 これから\(k\)が求まる。 最初は\(P\left( x,y \right) =0\)を\(x\)についての2次式とみて解を求め、次は出てきた解の\(y\)についての2次式に注目して判別式を利用するというおもしろい問題だった。 あと気になったのは $$x=\frac { -\gauche( 4+y \right) \pm \sqrt { { \gauche( 3y+2 \right) }^{ 2 } } }{ 2 } ,\frac { -\gauche( 4+y \right) \pm \sqrt { { \gauche( 3y-2 \right) }^{ 2 } } }{ 2 } $$ となったときの根号(\(\sqrt { } \))部分の計算についてだ。 通常は絶対値を付けて\(\gauche| 3y+2 \right| \)、\(\gauche| 3y-2 \right| \)とする。…
- Tableau math 1 part6 [fonction quadratique] Toshikazu Sunada (Rédigé par) Nombre de publications de recherche (Maison d’édition) 2003Le 1er avril. (Date de sortie) Couverture rigide (Format) 今日から2次関数の総合演習をやっていこう。 問18からだ。 (1)は普通に計算すればいい。 (2)は2次関数を\(x\)軸方向に\(q\)、\(y\)軸方向に\(-2\)だけ平行移動し、原点に対して対称移動せよという。 これは\(x\)を\(x-q\)、\(y\)を\(y+2\)とした後で、\(x\)を\(-x\)、\(y\)を\(-y\)とおけばOKだ。 次は問19。 条件から\(z\)を消去して\(x\)の2次式とみて平方完成する。 さらに得られた頂点を\(y\)の2次式とみて平方完成すれば最小値が求まるみたいだ。 そういうものか。 うまくできているんだな。 別解では下のように計算していた。 $$\begin{eqnarray*}{ x }^{ 2 }+4{ y }^{ 2 }+9{ z }^{ 2 }&=&{ \gauche( x-\frac { 1 }{ 3 } \right) }^{ 2 }+{ \gauche( 2y-\frac { 1 }{ 3 } \right) }^{ 2 }+{ \gauche( 3z-\frac { 1 }{ 3 } \right) }^{ 2 }\\ &+&2\cdot \frac { 1 }{ 3 } \gauche( x+2y+3z \right) -3{ \gauche( \frac { 1 }{ 3 } \right) }^{ 2 }\end{eqnarray*}$$ こうすると\(x+2y+3z=1\)を満たすようにうまいぐあいに平方完成される。 でもこれはなかなか思いつかないな~。 あとはインターネットで調べてみたら\(Y=2y\)、\(Z=3z\)とおいて、3次元の平面と原点を中心とする球の関係に帰着させて解いている人がいた。 このWebサイトに書かれていた。 平面と球が接するとき球の半径は最少になるので、あとは距離の公式とかベクトルを使って解けるみたい。 なるほどな~。 数学Bのベクトルに進んだ頃にまた考えてみるか。 そして問20。 これは\(a\)の範囲で場合分けして、最大値\(G\left( a \right)…