Toshikazu Sunada (Rédigé par)
Nombre de publications de recherche (Maison d’édition)
2003Le 1er avril. (Date de sortie)
Couverture rigide (Format)
今日も進めていこう。
まずは問24。
これは①式と②式の判別式\(D\ge 0\)から\(a\)の範囲を求めて計算すればいい。
簡単だ。
次は問25。
これは場合分けして絶対値を外してから、解の公式や因数分解を使って不等式を解けばいい。
(3)は絶対値のついている式が2つあるので面倒だが、地道に場合分けをして計算すれば解ける。
僕はうっかり計算ミスで(1)J’ai fait une erreur。
気をつけないといけないな。
そして問26。
Premier\(a\)の範囲で場合分けして2次不等式を解く。
そして条件である、整数\(x\)がただ1つ存在することを満たすような\(a\)の範囲を探せばいい。
これも簡単だ。
今日は1時間もかからず終わったな。
Aussi la prochaine fois nous。
Articles connexes
- Graphique 15 math 1 [forme et pesant] Toshikazu Sunada (Rédigé par) Nombre de publications de recherche (Maison d’édition) 2003Le 1er avril. (Date de sortie) Couverture rigide (Format) 今日も解いていきます。 問48からだ。 ヒントにあるように\(\Sin { \Thêta } =\tan { \Thêta } \COS { \Thêta } \)に気づくと、\(f\left( \theta \right) \)が積の形に変形できるので、これを利用する。 (1)は普通に解けばいい。 (2)は\(f\left( \theta \right)<0 \)ainsi、積の2つの項が\(0\)より大きいものと小さいものである場合である。 あとは\(0°<\Thêta <180°\)(ただし\(\theta \neq 90°\))のとき、\(\tan { \Thêta } <1\)となるのは\(0°<\Thêta <45°\)、\(90°<\Thêta <180°\)に注意して解くといい。 僕はうっかりミスしてしまった。 気をつけないといけないな。 次は問49。 これは $$\sin ^{ 2 }{ x } +\COS ^{ 2 }{ x } =1$$ $$\sin ^{ 2 }{ y } +\COS ^{ 2 }{ y } =1$$ という公式を使うと、変数が4つで式が4本になるので連立させていくと方程式が解ける。 僕は以下のような三角関数の合成の公式を使って解いた。 $$a\sin { \Thêta } +b cos { \Thêta } =\sqrt { { un }^{ 2 }+{ b }^{ 2 } } \Sin { \gauche( \theta +\alpha…
- チャート式 数学1 part10【2次関数編】 Toshikazu Sunada (Rédigé par)Nombre de publications de recherche (Maison d’édition)2003Le 1er avril. (Date de sortie)Couverture rigide (Format) 今日も2次関数のB問題を進めていこう。問30からだ。(1)は普通に場合分けをして絶対値を外せばいい。(2)がこの問題のポイントとなるところだろう。【1】\(x\ge a\)のとき、\(a\ge \frac { 1 }{ 2 } \)の場合と\(un<\frac { 1 }{ 2 } \)の場合で最小値\(m\left( a \right) \)が異なるので、場合分けする。同様に【2】\(x<a\)のときは、\(un>-\frac { 1 }{ 2 } \)の場合と\(a\le -\frac { 1 }{ 2 } \)の場合で場合分けが必要だ。そしたら\(a\ge \frac { 1 }{ 2 } \)、\(-\frac { 1 }{ 2 } <un<\frac { 1 }{ 2 } \)、\(a\le -\frac { 1 }{ 2 } \)の場合で【1】と【2】のそれぞれの差をとってどちらがより小さいかを明らかにし、関数\(f\left( x \right) \)の最小値\(m\left( a \right) \)を求めることになる。僕はグラフを見てなんとなく直感で解いたが、それではダメだったんだな。しっかり場合分けが必要みたいだ。(3)は(2)がちゃんと解けていれば簡単だ。 次は問31。Premier(1)。今\(a\)、\(b\)、\(x\)、\(y\)全てが正の実数なので、以下の不等式 $$\frac { x }{ un } \le \frac { y }{ b } $$ の両辺に\(ab\)をかけたり、2乗したりしても、不等号の向きは変わらないし、通常は2乗することで生じる余計な解が含まれることもない。あとは条件式を利用して\({ y }^{ 2 }\)を消去すればいい。(2)は(1)から\(0\le x\le \frac { un }{ \sqrt { { un }^{…
- Tableau math 1 part6 [fonction quadratique] Toshikazu Sunada (Rédigé par) Nombre de publications de recherche (Maison d’édition) 2003Le 1er avril. (Date de sortie) Couverture rigide (Format) 今日から2次関数の総合演習をやっていこう。 問18からだ。 (1)は普通に計算すればいい。 (2)は2次関数を\(x\)軸方向に\(q\)、\(y\)軸方向に\(-2\)だけ平行移動し、原点に対して対称移動せよという。 これは\(x\)を\(x-q\)、\(y\)を\(y+2\)とした後で、\(x\)を\(-x\)、\(y\)を\(-y\)とおけばOKだ。 次は問19。 条件から\(z\)を消去して\(x\)の2次式とみて平方完成する。 さらに得られた頂点を\(y\)の2次式とみて平方完成すれば最小値が求まるみたいだ。 そういうものか。 うまくできているんだな。 別解では下のように計算していた。 $$\begin{eqnarray*}{ x }^{ 2 }+4{ y }^{ 2 }+9{ z }^{ 2 }&=&{ \gauche( x-\frac { 1 }{ 3 } \right) }^{ 2 }+{ \gauche( 2y-\frac { 1 }{ 3 } \right) }^{ 2 }+{ \gauche( 3z-\frac { 1 }{ 3 } \right) }^{ 2 }\\ &+&2\cdot \frac { 1 }{ 3 } \gauche( x+2y+3z \right) -3{ \gauche( \frac { 1 }{ 3 } \right) }^{ 2 }\end{eqnarray*}$$ こうすると\(x+2y+3z=1\)を満たすようにうまいぐあいに平方完成される。 でもこれはなかなか思いつかないな~。 あとはインターネットで調べてみたら\(Y=2y\)、\(Z=3z\)とおいて、3次元の平面と原点を中心とする球の関係に帰着させて解いている人がいた。 このWebサイトに書かれていた。 平面と球が接するとき球の半径は最少になるので、あとは距離の公式とかベクトルを使って解けるみたい。 なるほどな~。 数学Bのベクトルに進んだ頃にまた考えてみるか。 そして問20。 これは\(a\)の範囲で場合分けして、最大値\(G\left( a \right)…