
Toshikazu Sunada (Rédigé par)
Nombre de publications de recherche (Maison d’édition)
2003Le 1er avril. (Date de sortie)
Couverture rigide (Format)
今日も進めていこう。
まずは問24。
これは①式と②式の判別式\(D\ge 0\)から\(a\)の範囲を求めて計算すればいい。
簡単だ。
次は問25。
これは場合分けして絶対値を外してから、解の公式や因数分解を使って不等式を解けばいい。
(3)は絶対値のついている式が2つあるので面倒だが、地道に場合分けをして計算すれば解ける。
僕はうっかり計算ミスで(1)J’ai fait une erreur。
気をつけないといけないな。
そして問26。
Premier\(a\)の範囲で場合分けして2次不等式を解く。
そして条件である、整数\(x\)がただ1つ存在することを満たすような\(a\)の範囲を探せばいい。
これも簡単だ。
今日は1時間もかからず終わったな。
Aussi la prochaine fois nous。
Articles connexes
- Tableau math 1 part11 [fonction quadratique] Toshikazu Sunada (Rédigé par)Nombre de publications de recherche (Maison d’édition)2003Le 1er avril. (Date de sortie)Couverture rigide (Format) 今回も解いていく。今日は問33からだ。絶対値がたくさんついている。僕はヒントに従って、\(N=2\)のときと\(N=3\)のときを計算してみて、あとは\(N\)が偶数と奇数の場合に分けて、なんとなく答えを出した。Toutefois,、正答を見てみると、以下のように回答していた。 $${ un }_{ K }\le x\le { un }_{ k+1 }\quad \left( k=1,2,\cdot \cdot \cdot \cdot \cdot \cdot ,N-1 \right) のとき$$ $$f\left( x \right) =\left( -N+2k \right) x-{ un }_{ 1 }-{ un }_{ 2 }-\cdot \cdot \cdot \cdot \cdot \cdot -{ un }_{ K }+{ un }_{ k+1 }+\cdot \cdot \cdot \cdot \cdot \cdot +{ un }_{ N }$$ あとは\(N\)が偶数の場合と奇数の場合で、\(-N+2k\)が正か負か0かに着目してグラフの形を考えてみれば解けるみたい。こうやってしっかり解かないといけなかったみたいだ。数学2の単調増加、単調減少の考え方も入っているのかな。 次は問34。(1)はまず、2次方程式が異なる実数の2解を持つように判別式\(D>0\)とすればいい。そして共通解を\(x=\alpha \)Et garder、2本の2次方程式に代入して計算すると、\({ \Alpha }^{ 2 }\)の項がうまい具合に消えて、\(\alpha=1\)と分かる。これで\(a\)の範囲が求められる。(2)は\(f\left( x \right) ={ x }^{ 2 }+ax+4\)、\(g\left( x \right) ={ x }^{ 2 }+4x+\alpha \)Et garder、グラフを書いてみる。あとは\(f\left( x \right)\)と\(g\left( x \right)\)が\(x=1\)で交わることに注意してグラフから実数解の大小を考えればいいだろう。 そして問35。\(x\)と\(p\)で表される放物線と三角形が交わるような実数\(p\)の範囲を求めよという問題だ。僕はまずヒントにしたがって放物線が三角形の各頂点を通るときの\(p\)を求めた。あとは\(f\left( x \right) ={ \gauche( x-p…
- Graphique 15 math 1 [forme et pesant] Toshikazu Sunada (Rédigé par) Nombre de publications de recherche (Maison d’édition) 2003Le 1er avril. (Date de sortie) Couverture rigide (Format) 今日も解いていきます。 問48からだ。 ヒントにあるように\(\Sin { \Thêta } =\tan { \Thêta } \COS { \Thêta } \)に気づくと、\(f\left( \theta \right) \)が積の形に変形できるので、これを利用する。 (1)は普通に解けばいい。 (2)は\(f\left( \theta \right)<0 \)ainsi、積の2つの項が\(0\)より大きいものと小さいものである場合である。 あとは\(0°<\Thêta <180°\)(ただし\(\theta \neq 90°\))のとき、\(\tan { \Thêta } <1\)となるのは\(0°<\Thêta <45°\)、\(90°<\Thêta <180°\)に注意して解くといい。 僕はうっかりミスしてしまった。 気をつけないといけないな。 次は問49。 これは $$\sin ^{ 2 }{ x } +\COS ^{ 2 }{ x } =1$$ $$\sin ^{ 2 }{ y } +\COS ^{ 2 }{ y } =1$$ という公式を使うと、変数が4つで式が4本になるので連立させていくと方程式が解ける。 僕は以下のような三角関数の合成の公式を使って解いた。 $$a\sin { \Thêta } +b cos { \Thêta } =\sqrt { { un }^{ 2 }+{ b }^{ 2 } } \Sin { \gauche( \theta +\alpha…
- Formules de graphique Mathématiques A Partie 7 [Logique et ensembles] Yanagawa, Takaaki (Rédigé par)Nombre de publications de recherche (Maison d’édition)2003Le 1er avril. (Date de sortie)Couverture rigide (Format) La question 34 consiste à énoncer la vérité ou la fausseté d’une proposition.。Quant à moi(1)J’ai fait une erreur。偽の場合は反例を書けばいい。問35は(3)J’ai fait une erreur。\( x^{2}+ax+b \lt 0\)の解が\( 0 \lt x \lt 1 \)を含むただし一致しない事であるみたい。次は問36。数Iで学んだ因数分解の公式で簡単に解ける。そうして問37。(1)は対偶を示すのが簡単という。(2)はn=3k, n=3k+1, n=3k+2の場合に分けて考える。さらに問38。(2)は少なくともの証明で背理法をつかう。総合演習Bも解いていく。まずは問39だ。ヒントを見るとa,b,cの偶奇で8つの場合に分かれる。過程を満たす場合を調べる。さらに問40。(2)は対偶を調べればよい。そして問41。存在するとは少なくとも1つあるという事で(1)は背理法が有効。(2)は偽だ。 最後に問42である。(1)は背理法、(2)は(1)を利用して解ける。次回は平面図形の総合演習を解いていく。