Toshikazu Sunada (Rédigé par)
Nombre de publications de recherche (Maison d’édition)
2003Le 1er avril. (Date de sortie)
Couverture rigide (Format)
今日も進めていくぞ~。
問15からだ。
(1)は解の公式を利用して解を求め、誘導にしたがって因数分解すればいい。
(2)は\(P\left( x,y \right) =0\)を、\(x\)についての2次方程式と考えて解の公式で解く。
et\(x=f\left( y \right) \)、\(x=g\left( y \right) \)とすると、\(P\left( x,y \right) =\left\{ x-f\left( y \right) \right\} \left\{ x-g\left( y \right) \right\} \)と因数分解できる。
Maintenant、\(P\left( x,y \right)\)が\(x\)、\(y\)についての1次式の積として表されるので、解の公式で求められた解の\(\sqrt { } \)内の\(y\)についての2次式が、\(y\)の1次式の平方数(2乗)の形にならないといけない。
このとき\(y\)についての2次式は重解をもち、判別式\(D=0\)être。
これから\(k\)が求まる。
最初は\(P\left( x,y \right) =0\)を\(x\)についての2次式とみて解を求め、次は出てきた解の\(y\)についての2次式に注目して判別式を利用するというおもしろい問題だった。
あと気になったのは
$$x=\frac { -\left( 4+y \right) \pm \sqrt { { \left( 3y+2 \right) }^{ 2 } } }{ 2 } ,\frac { -\left( 4+y \right) \pm \sqrt { { \left( 3y-2 \right) }^{ 2 } } }{ 2 } $$
となったときの根号(\(\sqrt { } \))部分の計算についてだ。
通常は絶対値を付けて\(\left| 3y+2 \right| \)、\(\left| 3y-2 \right| \)とする。
et\(y\)の値について場合分けして絶対値を外すことになるだろう。
しかし今回は解に\(\pm\)がついているので、場合分けをしなくても結果は同じになるみたいだ。
$$\pm \sqrt { { \left( 3y+2 \right) }^{ 2 } } =\pm \left( 3y+2 \right) $$
ということだな。
\(\pm \sqrt { { \left( 3y-2 \right) }^{ 2 } } \)についても同じ。
そして問16。
$$f\left( { x }^{ 2 }+a \right) -x=\left( { x }^{ 2 }-x+a \right) \left( { x }^{ 2 }+x+a+1 \right) =0\tag{1}$$
(1)式のすべての解は方程式\(f\left( { x } \right) -x={ x }^{ 2 }-x+a=0\)の解であるというので、
$${ x }^{ 2 }+x+a+1=0\tag{2}$$
のすべての解が
$${ x }^{ 2 }-x+a=0\tag{3}$$
の解になればいい。
(2)式について解の公式を使い、(3)式から(2)式を使って\({ x }^{ 2 }\)を消去したものに、\(x\)を代入すると\(a\)が求められるな。
最後に問17。
Premier(1)。
条件\(a<b\)より、\(\frac { 1 }{ b } <\frac { 1 }{ a } \)être。
\(\frac { 2 }{ b } <\frac { 1 }{ a } +\frac { 1 }{ b } <\frac { 1 }{ 4 } \)となり\(b>8\)être。
あとは最少の\(b=9\)として\(a\)を求めればいい。
(2)は変数が1つ増えて3つになっているが、(1)と同様に\(c\)の範囲を求めて最も小さい\(c\)を決めて、\(a\)、\(b\)もこれまた同様に求めればいいな。
これで第1章「方程式と不等式」の総合演習がすべて終わった。
今度から第2章「2次関数」について進めていこう。
Articles connexes
- 1 partie 3 Toshikazu Sunada (Rédigé par) Nombre de publications de recherche (Maison d’édition) 2003Le 1er avril. (Date de sortie) Couverture rigide (Format) 今日も問題を解いていこう。 問8からだ。 (1)では与えられた方程式が\(x=0\)のときには成り立たないので、\(x\neq 0\)と分かる。 よってこの方程式を\({ x }^{ 2 }\)で割ることができる。 あとは普通に解けばいいな。 (2)は実数解を求めよとのこと。 判別式\(D\)が\(D\ge 0\)のとき2次方程式は実数解を持つ。 これに注意して計算すればOKだ。 そして問9。 Aのポンプから注がれる水の量を\(x\)(L/h)、Bのポンプから注がれる水の量を\(y\)(L/h)、貯水池の水の総量を\(z\)(L)などとおく。 このとき、\(x,y>0\)être。 あとは方程式を2つ立てて\(z\)を消去し、\(x\)を\(y\)で表す。 求める時間は\(\frac { z }{ y } \)で表されて、これに代入すれば終わりだな。 しかし僕は途中で計算ミスをして間違えてしまった。 気をつけないといけない。 次は問10。 ヒントによるとこの条件式は比例式というもので、比例式\(=k\)Et garder、\(x\)、\(y\)、\(z\)についての連立方程式とみて、\(x\)、\(y\)、\(z\)を\(k\)で表せばいいらしい。 あとは代入して計算すればいい。 僕はヒントを見落としていたので、\(k\)とはおかずに\(y\)、\(z\)を\(x\)で表して解いた。 まぁそれでもいいだろうけど、比例式は\(k\)とおくのが鉄則みたいだな。 最後に問11。 \(Ax=0\)が\(x=0\)でない解を持つなら、\(A\)は正則行列でないということを大学の線形代数の講義で学んだ気がする… つまり\(A\)は逆行列を持たないということだ。 $$\begin{pmatrix} 1-K & 2 \\ 3 & 2-k \end{pmatrix}\gauche( \begin{matrix} x \\ y \end{matrix} \right) =\left( \begin{matrix} 0 \\ 0 \end{matrix} \right) $$ 上の式で\(A=\begin{pmatrix} 1-K & 2 \\ 3 & 2-k \end{pmatrix}\)として、逆行列を持たないとき\(\Delta =\left( 1-k \right) \gauche( 2-k \right) -6=0\)être。 これで\(k\)が求まる。 ヒントにあるように、行列を使わないで普通に\(y\)を消去して\(Ax=0\)として、\(x\neq 0\)の解をもつならば、\(A=0\)としても同じことか。 今日はここで終わり~。
- Diagramme part14 math 1 [forme et pesant] Toshikazu Sunada (Rédigé par) Nombre de publications de recherche (Maison d’édition) 2003Le 1er avril. (Date de sortie) Couverture rigide (Format) 今日も解いていくぞ~。 問43からだ。 Maintenant、\(\gauche( b+c \right) :\gauche( c+a \right) :\gauche( a + b right) =4:5:6\)であるという。 ヒントにしたがって、\(\gauche( b+c \right) =4k\)、\(\gauche( c+a \right) =5k\)、\(\gauche( a + b right) =6k\)(\(K>0\))とおく。 そしてこの連立方程式を解くと\(a\)、\(b\)、\(c\)が\(k\)で表される。 あとは\(\triangle ABC\)について正弦定理と余弦定理を使うと答えが求められる。 次は問44。 余弦定理と面積を求める公式を使えばいい。 これは簡単だ。 その次は問45。 これも正弦定理や余弦定理、面積の公式を用いて解いていけばいい。 円に内接する四角形の対角をたすと\(180°\)になることに注意だな。 まぁ簡単。 そして問46。 四角錐についての問題だ。 実際に図を描いてみて、断面で切って平面図形を取り出して解くことになる。 僕は余弦定理、面積の公式を使って解いた。 Aussi、三角錐の体積は\(底面積\times 高さ\times \frac { 1 }{ 3 } \)であることなどを思い出した。 念のため、三角形の相似条件を復習のためまとめておく。 三角形の相似条件は 3組の辺の比が全て等しい 2組の辺の比とその間の角がそれぞれ等しい 2組の角がそれぞれ等しい である。 一般的に平面図形(立体)が相似である場合、 対応する線分の長さの比はすべて等しい 対応する角の大きさはすべて等しい ということが成り立つらしい。 最後に問47。 相似比が\(m:n\)である図形の面積の比は\({ m }^{ 2 }:{ n }^{ 2 }\)、相似比が\(m:n\)である立体の体積の比は\({ m }^{ 3 }:{ n }^{ 3 }\)être。 また三角柱の体積は\(底面積\times 高さ \)être。 これらから(1)は求められる。 次は(2)Mais、これを僕は間違ってしまった。 四角柱を半分に切って三角柱を作って…みたいな計算をしたのだが、これではうまくいかないんだな。 体積が半分とは限らないみたいだ。 線分ADの延長と線分BGの延長の交点をIなどとして、三角錐I-ABC、三角錐I-DGH、三角錐A-DGHに着目すればいいとのことだ。 そういう風に解くのか~。 これで総合演習のA問題が終わった。 次回からB問題を解いていこう。 難しくなるかな?
- チャート式 数学1 part10【2次関数編】 Toshikazu Sunada (Rédigé par)Nombre de publications de recherche (Maison d’édition)2003Le 1er avril. (Date de sortie)Couverture rigide (Format) 今日も2次関数のB問題を進めていこう。問30からだ。(1)は普通に場合分けをして絶対値を外せばいい。(2)がこの問題のポイントとなるところだろう。【1】\(x\ge a\)のとき、\(a\ge \frac { 1 }{ 2 } \)の場合と\(un<\frac { 1 }{ 2 } \)の場合で最小値\(m\left( a \right) \)が異なるので、場合分けする。同様に【2】\(x<a\)のときは、\(un>-\frac { 1 }{ 2 } \)の場合と\(a\le -\frac { 1 }{ 2 } \)の場合で場合分けが必要だ。そしたら\(a\ge \frac { 1 }{ 2 } \)、\(-\frac { 1 }{ 2 } <un<\frac { 1 }{ 2 } \)、\(a\le -\frac { 1 }{ 2 } \)の場合で【1】と【2】のそれぞれの差をとってどちらがより小さいかを明らかにし、関数\(f\left( x \right) \)の最小値\(m\left( a \right) \)を求めることになる。僕はグラフを見てなんとなく直感で解いたが、それではダメだったんだな。しっかり場合分けが必要みたいだ。(3)は(2)がちゃんと解けていれば簡単だ。 次は問31。Premier(1)。今\(a\)、\(b\)、\(x\)、\(y\)全てが正の実数なので、以下の不等式 $$\frac { x }{ un } \le \frac { y }{ b } $$ の両辺に\(ab\)をかけたり、2乗したりしても、不等号の向きは変わらないし、通常は2乗することで生じる余計な解が含まれることもない。あとは条件式を利用して\({ y }^{ 2 }\)を消去すればいい。(2)は(1)から\(0\le x\le \frac { un }{ \sqrt { { un }^{…