Toshikazu Sunada (Rédigé par)
Nombre de publications de recherche (Maison d’édition)
2003Le 1er avril. (Date de sortie)
Couverture rigide (Format)
今日も解いていきます。
問12からだ。
Selon les conseils\(x\)に関する2次方程式の解がすべて有理数となる条件は、判別式\(D\)が平方数であることだという。
え~っと、2次方程式\(a{ x }^{ 2 }+bx+c=0\)の解は、解の公式を用いて次式で表される。
$$x=\frac { -b\pm \sqrt { { b }^{ 2 }-4ac } }{ 2a }=\frac { -b\pm \sqrt { D } }{ 2a }\tag{1} $$
有理数とは分数\(\frac { m }{ n } \)(\(m\)、\(n\)は整数、\(n\neq 0\))の形で表される数であるという。
たしかに、\(a\)、\(b\)、\(c\)が整数のとき、\(\sqrt { D } \)が有理数なら\(x\)は有理数になる。
\(\sqrt { D } \)が無理数なら有理数\(+\)無理数で\(x\)は無理数だな。
Quant à moi
$${ m }^{ 2 }-28={ l }^{ 2 }$$
(\(l\)は\(0\)以上の整数)とおいて、\(m\)の範囲を\(2\sqrt { 7 } \le m\le 14\)と見つけてから、総当たりで探していった。
Toutefois,、回答を見るともっと簡単なやり方があったようだ。
$${ m }^{ 2 }-{ l }^{ 2 }=28$$
$$\left( m+l \right) \left( m-l \right) =28$$
として、\(m\)が自然数、\(l\)が\(0\)以上の整数であることと、\(m+l\)、\(m-l\)の差が偶数であり両者は奇数または偶数であることから、\(m+l=14\)、\(m-l=2\)と決まってしまうらしい。
こっちのほうが分かりやすいな。
次は問13。
A問題が終了ということで、ちょっと難しくなるのだろうか。
まぁやっていこう。
(1)は普通に計算すればいいな。
(2)も
$$ac+bd=1\tag{1}$$
$$ad-bc=0\tag{2}$$
これら2式に\(a\)、\(b\)、\(c\)、\(d\)をかけて足したり引いたりして変形すると答えが求まる。
そして問14。
(1)は簡単。
(2)は分からなくて迷った。
ヒントには平方の差を作ると書いてあるが、う~ん?
しばらく悩んだがやはり分からなかったので答えを見た。
なんだ、そういうことだったのか。
係数が実数の範囲で因数分解するとは下のようなことをすればよかったらしい。
$$\begin{eqnarray*}{ x }^{ 6 }+1&=&\left( { x }^{ 2 }+1 \right) \left( { x }^{ 4 }-{ x }^{ 2 }+1 \right)\\
&=&\left( { x }^{ 2 }+1 \right) \left\{ { \left( { x }^{ 2 }+1 \right) }^{ 2 }-3{ x }^{ 2 } \right\}\\
&=&\left( { x }^{ 2 }+1 \right) \left( { x }^{ 2 }+\sqrt { 3 } x+1 \right) \left( { x }^{ 2 }-\sqrt { 3 } x+1 \right) \end{eqnarray*} $$
$$\begin{eqnarray*}{ x }^{ 8 }+1&=&{ \left( { x }^{ 4 }+1 \right) }^{ 2 }-2{ x }^{ 4 }\\ &=&{ \left( { x }^{ 4 }+\sqrt { 2 } { x }^{ 2 }+1 \right) }^{ 2 }{ \left( { x }^{ 4 }-\sqrt { 2 } { x }^{ 2 }+1 \right) }^{ 2 }\\ &=&\left\{ { \left( { x }^{ 2 }+1 \right) }^{ 2 }-\left( 2-\sqrt { 2 } \right) { x }^{ 2 } \right\} \left\{ { \left( { x }^{ 2 }+1 \right) }^{ 2 }-\left( 2+\sqrt { 2 } \right) { x }^{ 2 } \right\} \\ &=&\left( { x }^{ 2 }+\sqrt { 2-\sqrt { 2 } } x+1 \right) \left( { x }^{ 2 }-\sqrt { 2-\sqrt { 2 } } x+1 \right) \end{eqnarray*} $$
$$ \left( { x }^{ 2 }+\sqrt { 2+\sqrt { 2 } } x+1 \right) \left( { x }^{ 2 }-\sqrt { 2+\sqrt { 2 } } x+1 \right)$$
これは分からなかったな、覚えておこう。
今日はここで終わりにする。
Articles connexes
- Tableau math 1 part6 [fonction quadratique] Toshikazu Sunada (Rédigé par) Nombre de publications de recherche (Maison d’édition) 2003Le 1er avril. (Date de sortie) Couverture rigide (Format) 今日から2次関数の総合演習をやっていこう。 問18からだ。 (1)は普通に計算すればいい。 (2)は2次関数を\(x\)軸方向に\(q\)、\(y\)軸方向に\(-2\)だけ平行移動し、原点に対して対称移動せよという。 これは\(x\)を\(x-q\)、\(y\)を\(y+2\)とした後で、\(x\)を\(-x\)、\(y\)を\(-y\)とおけばOKだ。 次は問19。 条件から\(z\)を消去して\(x\)の2次式とみて平方完成する。 さらに得られた頂点を\(y\)の2次式とみて平方完成すれば最小値が求まるみたいだ。 そういうものか。 うまくできているんだな。 別解では下のように計算していた。 $$\begin{eqnarray*}{ x }^{ 2 }+4{ y }^{ 2 }+9{ z }^{ 2 }&=&{ \gauche( x-\frac { 1 }{ 3 } \right) }^{ 2 }+{ \gauche( 2y-\frac { 1 }{ 3 } \right) }^{ 2 }+{ \gauche( 3z-\frac { 1 }{ 3 } \right) }^{ 2 }\\ &+&2\cdot \frac { 1 }{ 3 } \gauche( x+2y+3z \right) -3{ \gauche( \frac { 1 }{ 3 } \right) }^{ 2 }\end{eqnarray*}$$ こうすると\(x+2y+3z=1\)を満たすようにうまいぐあいに平方完成される。 でもこれはなかなか思いつかないな~。 あとはインターネットで調べてみたら\(Y=2y\)、\(Z=3z\)とおいて、3次元の平面と原点を中心とする球の関係に帰着させて解いている人がいた。 このWebサイトに書かれていた。 平面と球が接するとき球の半径は最少になるので、あとは距離の公式とかベクトルを使って解けるみたい。 なるほどな~。 数学Bのベクトルに進んだ頃にまた考えてみるか。 そして問20。 これは\(a\)の範囲で場合分けして、最大値\(G\left( a \right)…
- チャート式 数学1 part10【2次関数編】 Toshikazu Sunada (Rédigé par)Nombre de publications de recherche (Maison d’édition)2003Le 1er avril. (Date de sortie)Couverture rigide (Format) 今日も2次関数のB問題を進めていこう。問30からだ。(1)は普通に場合分けをして絶対値を外せばいい。(2)がこの問題のポイントとなるところだろう。【1】\(x\ge a\)のとき、\(a\ge \frac { 1 }{ 2 } \)の場合と\(un<\frac { 1 }{ 2 } \)の場合で最小値\(m\left( a \right) \)が異なるので、場合分けする。同様に【2】\(x<a\)のときは、\(un>-\frac { 1 }{ 2 } \)の場合と\(a\le -\frac { 1 }{ 2 } \)の場合で場合分けが必要だ。そしたら\(a\ge \frac { 1 }{ 2 } \)、\(-\frac { 1 }{ 2 } <un<\frac { 1 }{ 2 } \)、\(a\le -\frac { 1 }{ 2 } \)の場合で【1】と【2】のそれぞれの差をとってどちらがより小さいかを明らかにし、関数\(f\left( x \right) \)の最小値\(m\left( a \right) \)を求めることになる。僕はグラフを見てなんとなく直感で解いたが、それではダメだったんだな。しっかり場合分けが必要みたいだ。(3)は(2)がちゃんと解けていれば簡単だ。 次は問31。Premier(1)。今\(a\)、\(b\)、\(x\)、\(y\)全てが正の実数なので、以下の不等式 $$\frac { x }{ un } \le \frac { y }{ b } $$ の両辺に\(ab\)をかけたり、2乗したりしても、不等号の向きは変わらないし、通常は2乗することで生じる余計な解が含まれることもない。あとは条件式を利用して\({ y }^{ 2 }\)を消去すればいい。(2)は(1)から\(0\le x\le \frac { un }{ \sqrt { { un }^{…
- 1 partie12 2 Toshikazu Sunada (Rédigé par) Nombre de publications de recherche (Maison d’édition) 2003Le 1er avril. (Date de sortie) Couverture rigide (Format) 今日で2次関数編がラストだ。 問36からやっていこう。 ヒントにあるように以下のようにする。 $$\begin{eqnarray*}f\left( x \right) &=&{ x }^{ 2 }-ax+b-\left( -{ x }^{ 2 }-bx+a \right) \\ &=&2{ x }^{ 2 }-\gauche( a-b \right) x-\left( a-b \right) \end{eqnarray*}$$ そして\(a-b=t\left( t\neq 0 \right) \)Et garder、\(f\left( x \right) \)について\(f\left( x \right) <0\)を満たす実数\(x\)が必ず存在するので、2次関数の頂点の\(y\)座標は\(0\)より小さい。 よって\(T>0\)、\(T<-8\)となる。 あとはヒントにあるように放物線\(y=f\left( x \right) \)の軸は直線\(x=\frac { T }{ 4 } \)なのでこの軸に最も近い整数を考えればいい。 僕はここから悩んでしまって、次のようにした。 \(\frac { T }{ 4 } \)に最も近い整数は、 $$t=4k\left(kは0,-1,-2を除く整数 \right)のときはn=k$$ $$4k<t\le 4k+2\left(kは-1,-2を除く整数 \right)のときはn=k$$ $$4k+2<T< 4\gauche( k+1 \right) \gauche(kは-1,-2を除く整数 \right)のときはn=k+1$$ そして\(x=n\)を\(f\left( x \right)\)に代入すると\(f\left( x \right)\)は\(t /)の1次式と見ることができる。 あとは考えている\(t /)の範囲において、これまた\(k\)の範囲についても考慮しながら最大値の議論をしていくと、\(f\left( n \right) \le -2\)または\(f\left( n \right) < 0\)と分かり、題意を満たす整数\(n\)が必ず存在すると分かった。 解くのにかなり時間がかかってしまった… 実際の試験だったら時間がかかりすぎてしまって、僕は明らかにこの問題を解けていないだろう。 toutefois、正答例ではもっと簡単に解いていた。 $$T<-8のときf\left( -2 \right) =8+t<0$$…