Toshikazu Sunada (Rédigé par)
Nombre de publications de recherche (Maison d’édition)
2003Le 1er avril. (Date de sortie)
Couverture rigide (Format)
今日も解いていきます。
問12からだ。
Selon les conseils\(x\)に関する2次方程式の解がすべて有理数となる条件は、判別式\(D\)が平方数であることだという。
え~っと、2次方程式\(a{ x }^{ 2 }+bx+c=0\)の解は、解の公式を用いて次式で表される。
$$x=\frac { -b\pm \sqrt { { b }^{ 2 }-4ac } }{ 2a }=\frac { -b\pm \sqrt { D } }{ 2a }\tag{1} $$
有理数とは分数\(\frac { m }{ n } \)(\(m\)、\(n\)は整数、\(n\neq 0\))の形で表される数であるという。
たしかに、\(a\)、\(b\)、\(c\)が整数のとき、\(\sqrt { D } \)が有理数なら\(x\)は有理数になる。
\(\sqrt { D } \)が無理数なら有理数\(+\)無理数で\(x\)は無理数だな。
Quant à moi
$${ m }^{ 2 }-28={ l }^{ 2 }$$
(\(l\)は\(0\)以上の整数)とおいて、\(m\)の範囲を\(2\sqrt { 7 } \le m\le 14\)と見つけてから、総当たりで探していった。
Toutefois,、回答を見るともっと簡単なやり方があったようだ。
$${ m }^{ 2 }-{ l }^{ 2 }=28$$
$$\left( m+l \right) \left( m-l \right) =28$$
として、\(m\)が自然数、\(l\)が\(0\)以上の整数であることと、\(m+l\)、\(m-l\)の差が偶数であり両者は奇数または偶数であることから、\(m+l=14\)、\(m-l=2\)と決まってしまうらしい。
こっちのほうが分かりやすいな。
次は問13。
A問題が終了ということで、ちょっと難しくなるのだろうか。
まぁやっていこう。
(1)は普通に計算すればいいな。
(2)も
$$ac+bd=1\tag{1}$$
$$ad-bc=0\tag{2}$$
これら2式に\(a\)、\(b\)、\(c\)、\(d\)をかけて足したり引いたりして変形すると答えが求まる。
そして問14。
(1)は簡単。
(2)は分からなくて迷った。
ヒントには平方の差を作ると書いてあるが、う~ん?
しばらく悩んだがやはり分からなかったので答えを見た。
なんだ、そういうことだったのか。
係数が実数の範囲で因数分解するとは下のようなことをすればよかったらしい。
$$\begin{eqnarray*}{ x }^{ 6 }+1&=&\left( { x }^{ 2 }+1 \right) \left( { x }^{ 4 }-{ x }^{ 2 }+1 \right)\\
&=&\left( { x }^{ 2 }+1 \right) \left\{ { \left( { x }^{ 2 }+1 \right) }^{ 2 }-3{ x }^{ 2 } \right\}\\
&=&\left( { x }^{ 2 }+1 \right) \left( { x }^{ 2 }+\sqrt { 3 } x+1 \right) \left( { x }^{ 2 }-\sqrt { 3 } x+1 \right) \end{eqnarray*} $$
$$\begin{eqnarray*}{ x }^{ 8 }+1&=&{ \left( { x }^{ 4 }+1 \right) }^{ 2 }-2{ x }^{ 4 }\\ &=&{ \left( { x }^{ 4 }+\sqrt { 2 } { x }^{ 2 }+1 \right) }^{ 2 }{ \left( { x }^{ 4 }-\sqrt { 2 } { x }^{ 2 }+1 \right) }^{ 2 }\\ &=&\left\{ { \left( { x }^{ 2 }+1 \right) }^{ 2 }-\left( 2-\sqrt { 2 } \right) { x }^{ 2 } \right\} \left\{ { \left( { x }^{ 2 }+1 \right) }^{ 2 }-\left( 2+\sqrt { 2 } \right) { x }^{ 2 } \right\} \\ &=&\left( { x }^{ 2 }+\sqrt { 2-\sqrt { 2 } } x+1 \right) \left( { x }^{ 2 }-\sqrt { 2-\sqrt { 2 } } x+1 \right) \end{eqnarray*} $$
$$ \left( { x }^{ 2 }+\sqrt { 2+\sqrt { 2 } } x+1 \right) \left( { x }^{ 2 }-\sqrt { 2+\sqrt { 2 } } x+1 \right)$$
これは分からなかったな、覚えておこう。
今日はここで終わりにする。
Articles connexes
- Tableau math 1 part1 [chapitre équations et inéquations] Toshikazu Sunada (Rédigé par) Nombre de publications de recherche (Maison d’édition) 2003Le 1er avril. (Date de sortie) Couverture rigide (Format) よし、今日からこの問題集を始めていくぞ~。 まずは第1章「方程式と不等式」からだ。 第1問、同志社女子大の問題だという。 これはただ式を展開すればいいだけだ。 計算が面倒だけどな。 \({ x }^{ 5 }\)の係数は\(-19\)、\({ x }^{ 3 }\)の係数は\(-23\)だろう。 ほい、正解~。 Selon le commentaire、全部を展開しなくてもその次数の項にだけ注目すればいいみたい、Je vois。 次は第2問。 同志社大の問題だ。 (1)は条件式から $$xyz=3\left( xy+yz+xz \right)\tag{1} $$ となり、あとは普通に与えられた式を展開して(1)式を代入すれば、都合よく\(\gauche( xy+yz+xz \right)\)の項が消えて答えが出る。 (2)はヒントによれば、 $${ x }^{ 3 }+{ y }^{ 3 }+{ z }^{ 3 }-3xyz=\left( x+y+z \right) \gauche( { x }^{ 2 }+{ y }^{ 2 }+{ z }^{ 2 }-xy-yz-zx \right) $$ という公式を利用するみたい。 この式を変形すると、 $${ x }^{ 3 }+{ y }^{ 3 }+{ z }^{ 3 }={ \gauche( x+y+z \right) }^{ 3 }-3\gauche( x+y+z \right) \gauche( xy+yz+zx \right) +3xyz $$ このようになって、Le reste(1)と同様に式を代入すれば\({ x }^{ 3…
- チャート式 数学1 part10【2次関数編】 Toshikazu Sunada (Rédigé par)Nombre de publications de recherche (Maison d’édition)2003Le 1er avril. (Date de sortie)Couverture rigide (Format) 今日も2次関数のB問題を進めていこう。問30からだ。(1)は普通に場合分けをして絶対値を外せばいい。(2)がこの問題のポイントとなるところだろう。【1】\(x\ge a\)のとき、\(a\ge \frac { 1 }{ 2 } \)の場合と\(un<\frac { 1 }{ 2 } \)の場合で最小値\(m\left( a \right) \)が異なるので、場合分けする。同様に【2】\(x<a\)のときは、\(un>-\frac { 1 }{ 2 } \)の場合と\(a\le -\frac { 1 }{ 2 } \)の場合で場合分けが必要だ。そしたら\(a\ge \frac { 1 }{ 2 } \)、\(-\frac { 1 }{ 2 } <un<\frac { 1 }{ 2 } \)、\(a\le -\frac { 1 }{ 2 } \)の場合で【1】と【2】のそれぞれの差をとってどちらがより小さいかを明らかにし、関数\(f\left( x \right) \)の最小値\(m\left( a \right) \)を求めることになる。僕はグラフを見てなんとなく直感で解いたが、それではダメだったんだな。しっかり場合分けが必要みたいだ。(3)は(2)がちゃんと解けていれば簡単だ。 次は問31。Premier(1)。今\(a\)、\(b\)、\(x\)、\(y\)全てが正の実数なので、以下の不等式 $$\frac { x }{ un } \le \frac { y }{ b } $$ の両辺に\(ab\)をかけたり、2乗したりしても、不等号の向きは変わらないし、通常は2乗することで生じる余計な解が含まれることもない。あとは条件式を利用して\({ y }^{ 2 }\)を消去すればいい。(2)は(1)から\(0\le x\le \frac { un }{ \sqrt { { un }^{…
- Tableau math 1 part11 [fonction quadratique] Toshikazu Sunada (Rédigé par)Nombre de publications de recherche (Maison d’édition)2003Le 1er avril. (Date de sortie)Couverture rigide (Format) 今回も解いていく。今日は問33からだ。絶対値がたくさんついている。僕はヒントに従って、\(N=2\)のときと\(N=3\)のときを計算してみて、あとは\(N\)が偶数と奇数の場合に分けて、なんとなく答えを出した。Toutefois,、正答を見てみると、以下のように回答していた。 $${ un }_{ K }\le x\le { un }_{ k+1 }\quad \left( k=1,2,\cdot \cdot \cdot \cdot \cdot \cdot ,N-1 \right) のとき$$ $$f\left( x \right) =\left( -N+2k \right) x-{ un }_{ 1 }-{ un }_{ 2 }-\cdot \cdot \cdot \cdot \cdot \cdot -{ un }_{ K }+{ un }_{ k+1 }+\cdot \cdot \cdot \cdot \cdot \cdot +{ un }_{ N }$$ あとは\(N\)が偶数の場合と奇数の場合で、\(-N+2k\)が正か負か0かに着目してグラフの形を考えてみれば解けるみたい。こうやってしっかり解かないといけなかったみたいだ。数学2の単調増加、単調減少の考え方も入っているのかな。 次は問34。(1)はまず、2次方程式が異なる実数の2解を持つように判別式\(D>0\)とすればいい。そして共通解を\(x=\alpha \)Et garder、2本の2次方程式に代入して計算すると、\({ \Alpha }^{ 2 }\)の項がうまい具合に消えて、\(\alpha=1\)と分かる。これで\(a\)の範囲が求められる。(2)は\(f\left( x \right) ={ x }^{ 2 }+ax+4\)、\(g\left( x \right) ={ x }^{ 2 }+4x+\alpha \)Et garder、グラフを書いてみる。あとは\(f\left( x \right)\)と\(g\left( x \right)\)が\(x=1\)で交わることに注意してグラフから実数解の大小を考えればいいだろう。 そして問35。\(x\)と\(p\)で表される放物線と三角形が交わるような実数\(p\)の範囲を求めよという問題だ。僕はまずヒントにしたがって放物線が三角形の各頂点を通るときの\(p\)を求めた。あとは\(f\left( x \right) ={ \gauche( x-p…