Toshikazu Sunada (Rédigé par)
Nombre de publications de recherche (Maison d’édition)
2003Le 1er avril. (Date de sortie)
Couverture rigide (Format)
今日も問題を解いていこう。
問8からだ。
(1)では与えられた方程式が\(x=0\)のときには成り立たないので、\(x\neq 0\)と分かる。
よってこの方程式を\({ x }^{ 2 }\)で割ることができる。
あとは普通に解けばいいな。
(2)は実数解を求めよとのこと。
判別式\(D\)が\(D\ge 0\)のとき2次方程式は実数解を持つ。
これに注意して計算すればOKだ。
そして問9。
Aのポンプから注がれる水の量を\(x\)(L/h)、Bのポンプから注がれる水の量を\(y\)(L/h)、貯水池の水の総量を\(z\)(L)などとおく。
このとき、\(x,y>0\)être。
あとは方程式を2つ立てて\(z\)を消去し、\(x\)を\(y\)で表す。
求める時間は\(\frac { z }{ y } \)で表されて、これに代入すれば終わりだな。
しかし僕は途中で計算ミスをして間違えてしまった。
気をつけないといけない。
次は問10。
ヒントによるとこの条件式は比例式というもので、比例式\(=k\)Et garder、\(x\)、\(y\)、\(z\)についての連立方程式とみて、\(x\)、\(y\)、\(z\)を\(k\)で表せばいいらしい。
あとは代入して計算すればいい。
僕はヒントを見落としていたので、\(k\)とはおかずに\(y\)、\(z\)を\(x\)で表して解いた。
まぁそれでもいいだろうけど、比例式は\(k\)とおくのが鉄則みたいだな。
最後に問11。
\(Ax=0\)が\(x=0\)でない解を持つなら、\(A\)は正則行列でないということを大学の線形代数の講義で学んだ気がする…
Que veux-tu dire\(A\)は逆行列を持たないということだ。
$$\begin{pmatrix} 1-k & 2 \\ 3 & 2-k \end{pmatrix}\left( \begin{matrix} x \\ y \end{matrix} \right) =\left( \begin{matrix} 0 \\ 0 \end{matrix} \right) $$
上の式で\(A=\begin{pmatrix} 1-k & 2 \\ 3 & 2-k \end{pmatrix}\)として、逆行列を持たないとき\(\Delta =\left( 1-k \right) \left( 2-k \right) -6=0\)être。
これで\(k\)が求まる。
ヒントにあるように、行列を使わないで普通に\(y\)を消去して\(Ax=0\)として、\(x\neq 0\)の解をもつならば、\(A=0\)としても同じことか。
今日はここで終わり~。
Articles connexes
- Graphique Type Mathématiques 1 Part2 [Équation et inégalité] Toshikazu Sunada (Rédigé par) Nombre de publications de recherche (Maison d’édition) 2003Le 1er avril. (Date de sortie) Couverture rigide (Format) 今日も進めていきます。 今回は問4からだ。 式を因数分解せよということで(1)Je vais(10)まで式が10題並んでいる。 面倒だが計算するか。 (6)、(9)では以下の公式を使った。 $${ \gauche( a + b right) }^{ 3 }={ un }^{ 3 }+3{ un }^{ 2 }b+3a{ b }^{ 2 }+{ b }^{ 3 }$$ $${ \gauche( a-b \right) }^{ 3 }={ un }^{ 3 }-3{ un }^{ 2 }b+3a{ b }^{ 2 }-{ b }^{ 3 }$$ $${ un }^{ 3 }+{ b }^{ 3 }=\left( a + b right) \gauche( { un }^{ 2 }-ab+{ b }^{ 2 } \right) $$ $${ un }^{ 3 }-{ b }^{ 3 }=\left( a-b \right) \gauche( { un }^{ 2…
- チャート式 数学1 part10【2次関数編】 Toshikazu Sunada (Rédigé par)Nombre de publications de recherche (Maison d’édition)2003Le 1er avril. (Date de sortie)Couverture rigide (Format) 今日も2次関数のB問題を進めていこう。問30からだ。(1)は普通に場合分けをして絶対値を外せばいい。(2)がこの問題のポイントとなるところだろう。【1】\(x\ge a\)のとき、\(a\ge \frac { 1 }{ 2 } \)の場合と\(un<\frac { 1 }{ 2 } \)の場合で最小値\(m\left( a \right) \)が異なるので、場合分けする。同様に【2】\(x<a\)のときは、\(un>-\frac { 1 }{ 2 } \)の場合と\(a\le -\frac { 1 }{ 2 } \)の場合で場合分けが必要だ。そしたら\(a\ge \frac { 1 }{ 2 } \)、\(-\frac { 1 }{ 2 } <un<\frac { 1 }{ 2 } \)、\(a\le -\frac { 1 }{ 2 } \)の場合で【1】と【2】のそれぞれの差をとってどちらがより小さいかを明らかにし、関数\(f\left( x \right) \)の最小値\(m\left( a \right) \)を求めることになる。僕はグラフを見てなんとなく直感で解いたが、それではダメだったんだな。しっかり場合分けが必要みたいだ。(3)は(2)がちゃんと解けていれば簡単だ。 次は問31。Premier(1)。今\(a\)、\(b\)、\(x\)、\(y\)全てが正の実数なので、以下の不等式 $$\frac { x }{ un } \le \frac { y }{ b } $$ の両辺に\(ab\)をかけたり、2乗したりしても、不等号の向きは変わらないし、通常は2乗することで生じる余計な解が含まれることもない。あとは条件式を利用して\({ y }^{ 2 }\)を消去すればいい。(2)は(1)から\(0\le x\le \frac { un }{ \sqrt { { un }^{…
- Tableau math 1 part4 [chapitre équations et inéquations] Toshikazu Sunada (Rédigé par)Nombre de publications de recherche (Maison d’édition)2003Le 1er avril. (Date de sortie)Couverture rigide (Format) 今日も解いていきます。問12からだ。ヒントによると\(x\)に関する2次方程式の解がすべて有理数となる条件は、判別式\(D\)が平方数であることだという。え~っと、2次方程式\(un{ x }^{ 2 }+bx+c=0\)の解は、解の公式を用いて次式で表される。 $$x=\frac { -b\pm \sqrt { { b }^{ 2 }-4ac } }{ 2un }= frac { -b\pm \sqrt { D } }{ 2un }\tag{1} $$ 有理数とは分数\(\frac { m }{ n } \)(\(m /)、\(n\)は整数、\(n\neq 0\))の形で表される数であるという。たしかに、\(a\)、\(b\)、\(c\)が整数のとき、\(\sqrt { D } \)が有理数なら\(x\)は有理数になる。\(\sqrt { D } \)が無理数なら有理数\(+\)無理数で\(x\)は無理数だな。Quant à moi $${ m }^{ 2 }-28={ l }^{ 2 }$$ (\(l\)は\(0\)以上の整数)とおいて、\(m /)の範囲を\(2\sqrt { 7 } \le m\le 14\)と見つけてから、総当たりで探していった。Toutefois,、回答を見るともっと簡単なやり方があったようだ。 $${ m }^{ 2 }-{ l }^{ 2 }=28$$ $$\left( m+l \right) \gauche( m-l \right) =28$$ として、\(m /)が自然数、\(l\)が\(0\)以上の整数であることと、\(m+l\)、\(m-l\)の差が偶数であり両者は奇数または偶数であることから、\(m+l=14\)、\(m-l=2\)と決まってしまうらしい。こっちのほうが分かりやすいな。 次は問13。A問題が終了ということで、ちょっと難しくなるのだろうか。まぁやっていこう。(1)は普通に計算すればいいな。(2)も $$ac+bd=1\tag{1}$$ $$ad-bc=0\tag{2}$$ これら2式に\(a\)、\(b\)、\(c\)、\(d\)をかけて足したり引いたりして変形すると答えが求まる。 そして問14。(1)は簡単。(2)は分からなくて迷った。ヒントには平方の差を作ると書いてあるが、う~ん?しばらく悩んだがやはり分からなかったので答えを見た。なんだ、そういうことだったのか。係数が実数の範囲で因数分解するとは下のようなことをすればよかったらしい。 $$\begin{eqnarray*}{ x }^{ 6 }+1&=&\gauche( { x }^{ 2 }+1…