今回から確率の総合演習を解いていく。まずは問19。ヒントによると確率の計算の基本は全事象\(U\)の場合の数\(N\)と、事象\(A\)の起こる場合の数\(a\)を求めて、\(P\left( A \right) =\frac { ...
Una variedad de diarios
今回から確率の総合演習を解いていく。まずは問19。ヒントによると確率の計算の基本は全事象\(U\)の場合の数\(N\)と、事象\(A\)の起こる場合の数\(a\)を求めて、\(P\left( A \right) =\frac { ...
今日も場合の数の問題を解いていく。まずは問15。僕は次のようにして解いた。Al principio、回転して重なる場合も異なる図形であるとすると、全ての塗り分け方は\({ 2 }^{ 9 }=512\)通りある。また回転しても形が変わらない塗り分け方…
今日から第1章「場合の数」の総合演習B問題を解いていく。まずは問11からだ。(A)の条件から、正の整数\(m\)は\(2\)を素因数にもたず、\(9={ 3 }^{ 2 }\)を因数にもつと分かる。(1)は背理法で証明すればいい。...
今日も場合の数の問題を解いていくぞ~問6からだ。これはまあ、組合せと円順列の問題だな。異なる\(n\)個のものの円順列の総数は\(\left( n-1 \right) !\)で表される。これを使って解けばいい。そして問7。僕はこの…
今日から数学Aの総合演習問題を解いていくぞ~まずは第1章「場合の数」だ。ヒントを見ながら進めていく。問1。(1)は奇数番目が必ず奇数になるので、5個の奇数から3個の数字を選ぶ順列と残り6個の数字から2個を選ぶ順列を考える。すると、...