Tabla de matemáticas 1 part16 [forma y peso]

砂田 利一 (Escrito por)数研出版 (Casa editorial de)20031 de abril de 2016 (Fecha de lanzamiento)Libro (Formato) 今日で第3章「図形と計量」が終わりだつまりはこの問題集「チャート式 数学1」が終わりということになる最後なのでがんばっていこうまずは問52。4辺の長さが分かっているが角度が分からない凸四角形ABCDについて、\(\triangle \)ABDの面積を\(S\)、\(\triangle \)BCDの面積を\(T\)とする。(1)は\({ S }^{ 2 }+{ T }^{ 2 }\)のとりうる値の範囲を求めよという問題だヒントにあるように\(\angle DAB=\alpha \)とおくと余弦定理や面積の公式などから\({ S }^{ 2 }+{ T }^{ 2 }\)は\(\cos { \alpha } \)の2次式として表されるあとは\(\cos { \alpha } =t\)などとおいて計算すればいいただここで問題なのは\(\alpha \)の範囲である条件としては四角形ABCDが凸四角形であるということだヒントによると凸四角形とは内角が4つとも\(180°\)より小さい四角形だという。Qué quieres decir、四角形の4つの角について以下が成り立つ。 $$0°<\angle A,\angle B,\angle C,\angle D<180°$$ $$\angle A+\angle B+\angle C+\angle D=360°$$ また余弦定理から以下の関係も求められる。 $$\cos { \angle C } =-1+\sqrt { 3 } \cos { \angle A } $$ $$\cos { \angle D } =-1+\sqrt { 3 } \cos { \angle B } $$ 他にも正弦定理からも方程式が求められる…となんとか\(\angle A=\alpha\)の範囲を計算しようと思ったがあまりに面倒なのでやめた… 次に僕は三角形の成立条件を考えてみた。 $$\left| b-c \right| <a<b+c$$ という三角形の辺の関係式だしかしこれだと\(0°<\alpha <90°\)となってしまうのだ正答は\(30°<\alpha <90°\)ser。やはり今回は凸四角形の条件ということで三角形の成立条件ではうまくいかないみたいだ三角形の成立条件だけだとブーメランみたいな形の四角形でもOKということになってしまうからな解答例によると実際に図示してみて考えるといいらしい今回は\(\angle C\)および\(\angle D\)が\(180°\)となるときにうまいこと四角形ABCDが直角三角形になるこれにより\(\alpha\)の範囲が求められるという計算ではなかなか範囲を求めるのは難しいので図を描いてみるというのが正解だったんだな~…(1)が分かれば(2)は簡単だ次は問53正五角形についての問題だこれはヒントにあるように正五角形\(F\)と正五角形\(G\)が相似のとき長さが\(k\)倍なら面積は\({ k }^{ 2 }\)倍であることを利用すればいいみたい平面図形がなんであれ相似なら面積は\({ k }^{ 2 }\)倍になるんだな覚えておこうあとは計算が面倒だががんばれば解ける僕は計算ミスしてしまったので気をつけないといけないそして問54。(1)は簡単。(2)(3)の問題を僕は間違えてしまった直円錐台の側面の展開図をちゃんと描いてABの延長とCDの延長の交点をOとするのがポイントみたいだそしたら断面図の関係と円周の長さの関係を考えて余弦定理から最短の曲線BEの長さが求まるらしい。(3)の線分CPの長さは三角形の面積の公式を使うと簡単に求められるみたいなるほど… 最後に問55三角柱を点ABCを通る平面で切断した立体の体積を求めるという問題だヒントによるとまず3つの三角錐A-DEFA-BEFA-BFCに分割して考える。1つ目の三角錐A-DEFの体積は普通に求まる。Además、A-BEFとA-BFCの体積は底面をうまくとらえて等積変形するといいらしいつまり三角錐の底面が同じで高さが同じなら体積が等しいという関係を使うのだ三角柱の3辺は平行なのでうまい具合に2つ目の三角錐A-BEFと三角錐D-BEFの体積が等しくなる同様に3つ目の三角錐A-BFCは三角錐D-BFCと体積が等しくなりこれは三角錐E-CDFと体積が等しくなるという不思議だ…あっさりと立体の体積が求められた。No seas un estudio.。 Ahora、僕は間違えまくってしまった図形問題が平面立体どちらも僕は苦手みたいだな~とにかくこれで数学1の総合演習の問題が全て終わった次回からは数学Aの問題を解いていこうと思う

チャート式 数学1 part15【図形と計量編】

  砂田 利一 (Escrito por) 数研出版 (Casa editorial de) 20031 de abril de 2016 (Fecha de lanzamiento) Libro (Formato) 今日も解いていきます問48からだヒントにあるように\(\sin { \theta } =\tan { \theta } \cos { \theta } \)に気づくと、\(f\left( \theta \right) \)が積の形に変形できるのでこれを利用する。 (1)は普通に解けばいい。 (2)は\(f\left( \theta \right)<0 \)なので積の2つの項が\(0\)より大きいものと小さいものである場合であるあとは\(0°<\theta <180°\)(ただし\(\theta \neq 90°\))のとき、\(\tan { \theta } <1\)となるのは\(0°<\theta <45°\)、\(90°<\theta <180°\)に注意して解くといい僕はうっかりミスしてしまった気をつけないといけないな次は問49これは $$\sin ^{ 2 }{ x } +\cos ^{ 2 }{ x } =1$$ $$\sin ^{ 2 }{ y } +\cos ^{ 2 }{ y } =1$$ という公式を使うと変数が4つで式が4本になるので連立させていくと方程式が解ける僕は以下のような三角関数の合成の公式を使って解いた。 $$a\sin { \theta } +b\cos { \theta } =\sqrt { { a }^{ 2 }+{ b }^{ 2 } } \sin { \left( \theta +\alpha \right) } $$ $$(ただし、\cos { \alpha } =\frac { aContinue readingチャート式 数学1 part15【図形と計量編】

チャート式 数学1 part14【図形と計量編】

  砂田 利一 (Escrito por) 数研出版 (Casa editorial de) 20031 de abril de 2016 (Fecha de lanzamiento) Libro (Formato) 今日も解いていくぞ~問43からだ、\(\left( b+c \right) :\left( c+a \right) :\left( a+b \right) =4:5:6\)であるというヒントにしたがって、\(\left( b+c \right) =4k\)、\(\left( c+a \right) =5k\)、\(\left( a+b \right) =6k\)(\(k>0\))とおくそしてこの連立方程式を解くと\(a\)、\(b\)、\(c\)が\(k\)で表されるあとは\(\triangle ABC\)について正弦定理と余弦定理を使うと答えが求められる次は問44余弦定理と面積を求める公式を使えばいいこれは簡単だその次は問45これも正弦定理や余弦定理面積の公式を用いて解いていけばいい円に内接する四角形の対角をたすと\(180°\)になることに注意だなまぁ簡単そして問46四角錐についての問題だ実際に図を描いてみて断面で切って平面図形を取り出して解くことになる僕は余弦定理面積の公式を使って解いた。 Además、三角錐の体積は\(底面積\times 高さ\times \frac { 1 }{ 3 } \)であることなどを思い出した念のため三角形の相似条件を復習のためまとめておく三角形の相似条件は 3組の辺の比が全て等しい 2組の辺の比とその間の角がそれぞれ等しい 2組の角がそれぞれ等しい である一般的に平面図形(立体)が相似である場合対応する線分の長さの比はすべて等しい 対応する角の大きさはすべて等しい ということが成り立つらしい最後に問47相似比が\(m:n\)である図形の面積の比は\({ m }^{ 2 }:{ n }^{ 2 }\)、相似比が\(m:n\)である立体の体積の比は\({ m }^{ 3 }:{ n }^{ 3 }\)ser。 また三角柱の体積は\(底面積\times 高さ \)ser。 これらから(1)は求められる次は(2)Pero、これを僕は間違ってしまった四角柱を半分に切って三角柱を作って…みたいな計算をしたのだがこれではうまくいかないんだな体積が半分とは限らないみたいだ線分ADの延長と線分BGの延長の交点をIなどとして三角錐I-ABC三角錐I-DGH三角錐A-DGHに着目すればいいとのことだそういう風に解くのか~これで総合演習のA問題が終わった次回からB問題を解いていこう難しくなるかな?

チャート式 数学1 part13【図形と計量編】

砂田 利一 (Escrito por) 数研出版 (Casa editorial de) 20031 de abril de 2016 (Fecha de lanzamiento) Libro (Formato) 第3章「図形と計量」に進んだ総合演習をAから解いていこう三角比とかが出題されるみたいだなまずは問38僕はいろいろな公式を使って式を変形して解いた以下のようなものだ。 $$\sin ^{ 2 }{ \alpha =\frac { 1-\cos { 2\alpha } }{ 2 } } $$ $$\cos ^{ 2 }{ \alpha =\frac { 1+\cos { 2\alpha } }{ 2 } } $$ $$\sin { \left( 90°-\alpha \right) } =\cos { \alpha } $$ $$\cos { \left( 90°-\alpha \right) } =\sin { \alpha } $$ Pero、今\(\alpha =22.5°\)なので\(3\alpha =90°-\alpha \)、\(5\alpha =180°-3\alpha \)、\(7\alpha =180°-\alpha \)であることに注目すれば式が\(\sin { \alpha } \)、\(\cos { \alpha } \)のみで表されてもっと簡単になったみたいだ次は問39以下の公式を用いて変形していけば簡単に解ける。 $$\sin ^{ 2 }{ \theta + } \cos ^{ 2 }{ \theta =1 } $$ $${ a }^{ 3 }+{ b }^{ 3 … Continue readingチャート式 数学1 part13【図形と計量編】

チャート式 数学1 part12【2次関数編】

砂田 利一 (Escrito por) 数研出版 (Casa editorial de) 20031 de abril de 2016 (Fecha de lanzamiento) Libro (Formato) 今日で2次関数編がラストだ問36からやっていこうヒントにあるように以下のようにする。 $$\begin{eqnarray*}f\left( x \right) &=&{ x }^{ 2 }-ax+b-\left( -{ x }^{ 2 }-bx+a \right) \\ &=&2{ x }^{ 2 }-\left( a-b \right) x-\left( a-b \right) \end{eqnarray*}$$ そして\(a-b=t\left( t\neq 0 \right) \)などとおいて、\(f\left( x \right) \)について\(f\left( x \right) <0\)を満たす実数\(x\)が必ず存在するので、2次関数の頂点の\(y\)座標は\(0\)より小さいよって\(T>0\)、\(T<-8\)となるあとはヒントにあるように放物線\(y=f\left( x \right) \)の軸は直線\(x=\frac { T }{ 4 } \)なのでこの軸に最も近い整数を考えればいい僕はここから悩んでしまって次のようにした。 \(\frac { T }{ 4 } \)に最も近い整数は、 $$t=4k\left(kは0,-1,-2を除く整数 \right)のときはn=k$$ $$4k<t\le 4k+2\left(kは-1,-2を除く整数 \right)のときはn=k$$ $$4k+2<T< 4\left( k+1 \right) \left(kは-1,-2を除く整数 \right)のときはn=k+1$$ そして\(x=n\)を\(f\left( x \right)\)に代入すると\(f\left( x \right)\)は\(t\)の1次式と見ることができるあとは考えている\(t\)の範囲においてこれまた\(k\)の範囲についても考慮しながら最大値の議論をしていくと、\(f\left( n \right) \le -2\)または\(f\left( n \right) < 0\)と分かり題意を満たす整数\(n\)が必ず存在すると分かった解くのにかなり時間がかかってしまった… 実際の試験だったら時間がかかりすぎてしまって僕は明らかにこの問題を解けていないだろう。 sin embargo、正答例ではもっと簡単に解いていた。 $$T<-8のときf\left( -2 \right) =8+t<0$$ $$T>0のときf\left( 0 \right) =-t<0$$ だというのであるこんな簡単に解けるとは… これには気づかなかったな。 \(T>0\)で\(t\)がどんどん大きくなっていくと軸\(x=\frac { T … Continue readingチャート式 数学1 part12【2次関数編】

Tabla de matemáticas 1 part11 [función cuadrática]

砂田 利一 (Escrito por)数研出版 (Casa editorial de)20031 de abril de 2016 (Fecha de lanzamiento)Libro (Formato) 今回も解いていく今日は問33からだ絶対値がたくさんついている僕はヒントに従って、\(N=2\)のときと\(N=3\)のときを計算してみてあとは\(N\)が偶数と奇数の場合に分けてなんとなく答えを出した。sin embargo、正答を見てみると以下のように回答していた。 $${ a }_{ k }\le x\le { a }_{ k+1 }\quad \left( k=1,2,\cdot \cdot \cdot \cdot \cdot \cdot ,N-1 \right) のとき$$ $$f\left( x \right) =\left( -N+2k \right) x-{ a }_{ 1 }-{ a }_{ 2 }-\cdot \cdot \cdot \cdot \cdot \cdot -{ a }_{ k }+{ a }_{ k+1 }+\cdot \cdot \cdot \cdot \cdot \cdot +{ a }_{ N }$$ あとは\(N\)が偶数の場合と奇数の場合で、\(-N+2k\)が正か負か0かに着目してグラフの形を考えてみれば解けるみたいこうやってしっかり解かないといけなかったみたいだ数学2の単調増加単調減少の考え方も入っているのかな次は問34。(1)はまず、2次方程式が異なる実数の2解を持つように判別式\(D>0\)とすればいいそして共通解を\(x=\alpha \)などとおいて、2本の2次方程式に代入して計算すると、\({ \alpha }^{ 2 }\)の項がうまい具合に消えて、\(\alpha=1\)と分かるこれで\(a\)の範囲が求められる。(2)は\(f\left( x \right) ={ x }^{ 2 }+ax+4\)、\(g\left( x \right) ={ x }^{ 2 }+4x+\alpha \)などとおいてグラフを書いてみるあとは\(f\left( x \right)\)と\(g\left( x \right)\)が\(x=1\)で交わることに注意してグラフから実数解の大小を考えればいいだろうそして問35。\(x\)と\(p\)で表される放物線と三角形が交わるような実数\(p\)の範囲を求めよという問題だ僕はまずヒントにしたがって放物線が三角形の各頂点を通るときの\(p\)を求めたあとは\(f\left( x \right) ={ \left( x-p \right) }^{ 2 }-2\)とおいて各\(p\)の範囲において\(f\left( 0 \right) \)や\(f\left( 1 \right) \)の大きさに着目して三角形の辺と交わるかを調べたちょっと面倒だったが解けた正答例ではグラフで図示して放物線と三角形が交わる場合を調べて解いていたこっちのほうが分かりやすいかもな。 … Continue readingTabla de matemáticas 1 part11 [función cuadrática]

チャート式 数学1 part10【2次関数編】

砂田 利一 (Escrito por)数研出版 (Casa editorial de)20031 de abril de 2016 (Fecha de lanzamiento)Libro (Formato) 今日も2次関数のB問題を進めていこう問30からだ。(1)は普通に場合分けをして絶対値を外せばいい。(2)がこの問題のポイントとなるところだろう【1】\(x\ge a\)のとき、\(a\ge \frac { 1 }{ 2 } \)の場合と\(a<\frac { 1 }{ 2 } \)の場合で最小値\(m\left( a \right) \)が異なるので場合分けする同様に【2】\(x<a\)のときは、\(a>-\frac { 1 }{ 2 } \)の場合と\(a\le -\frac { 1 }{ 2 } \)の場合で場合分けが必要だそしたら\(a\ge \frac { 1 }{ 2 } \)、\(-\frac { 1 }{ 2 } <a<\frac { 1 }{ 2 } \)、\(a\le -\frac { 1 }{ 2 } \)の場合で【1】と【2】のそれぞれの差をとってどちらがより小さいかを明らかにし関数\(f\left( x \right) \)の最小値\(m\left( a \right) \)を求めることになる僕はグラフを見てなんとなく直感で解いたがそれではダメだったんだなしっかり場合分けが必要みたいだ。(3)(2)がちゃんと解けていれば簡単だ次は問31。Primero(1)。今\(a\)、\(b\)、\(x\)、\(y\)全てが正の実数なので以下の不等式 $$\frac { x }{ a } \le \frac { y }{ b } $$ の両辺に\(ab\)をかけたり、2乗したりしても不等号の向きは変わらないし通常は2乗することで生じる余計な解が含まれることもないあとは条件式を利用して\({ y }^{ 2 }\)を消去すればいい。(2)(1)から\(0\le x\le \frac { a }{ \sqrt { { a }^{ 3 }+{ b }^{ 3 } } } \)のとき、\(\min { … Continue readingチャート式 数学1 part10【2次関数編】

チャート式 数学1 part9【2次関数編】

砂田 利一 (Escrito por)数研出版 (Casa editorial de)20031 de abril de 2016 (Fecha de lanzamiento)Libro (Formato) 今日も問題を解いていく問27からだヒントが解き方をよく表していた。(1)は\(f\left( x \right) -g\left( x \right) \)の最小値\(>0\)とする。(2)は\(f\left( x \right) -g\left( x \right) \)の最大値\(>0\)。(3)は\(f\left( x \right)\)の最小値\(>g\left( x \right)\)の最大値となる。(4)は\(f\left( x \right)\)の最大値\(>g\left( x \right)\)の最小値らしいヒントがなかったらよく分からなかったかもしれない気をつけよう次は問28これは点\(A\)と点\(B\)が異なることに注意して普通に計算すればいいだろう簡単簡単そして問29ここからA問題が終わってB問題が始まるということで少し難しくなるかもしれない。(1)は与えられた方程式から\(y\)を消去して、\(x\)と\(t\)の式と見るそして\(x\)についての2次方程式が実数解を持つことから判別式\(D\ge 0\)となり、\(t\)のとりうる範囲が求まる。Ya veo、そういうものかあるいは図示してみてもいいかもしれない。\({ x }^{ 2 }+{ y }^{ 2 }=1\)は原点を中心とする半径\(1\)の円で、\(y=-x+t\)は傾き\(-1\)、\(y\)切片を\(t\)とする直線だこれらが交点を持つ範囲を考えれば直線が円に接しているときがギリギリなのでそのときの\(t\)の値を図形と角度の関係から求めてもいいな。 (2)は\(S\)を\(t\)で表したら、(1)で求めた範囲内での最大値最小値を求めればいい今日はこれで終わり~

チャート式 数学1 part8【2次関数編】

    砂田 利一 (Escrito por) 数研出版 (Casa editorial de) 20031 de abril de 2016 (Fecha de lanzamiento) Libro (Formato) 今日も進めていこうまずは問24これは①式と②式の判別式\(D\ge 0\)から\(a\)の範囲を求めて計算すればいい簡単だ次は問25これは場合分けして絶対値を外してから解の公式や因数分解を使って不等式を解けばいい。 (3)は絶対値のついている式が2つあるので面倒だが地道に場合分けをして計算すれば解ける僕はうっかり計算ミスで(1)を間違えてしまった気をつけないといけないなそして問26まずは\(a\)の範囲で場合分けして2次不等式を解くそして条件である整数\(x\)がただ1つ存在することを満たすような\(a\)の範囲を探せばいいこれも簡単だ今日は1時間もかからず終わったなまた次回進めていこう

Gráfico Fórmula Matemáticas 1 parte7 [Segunda Función]

砂田 利一 (Escrito por) 数研出版 (Casa editorial de) 20031 de abril de 2016 (Fecha de lanzamiento) Libro (Formato) 今日も2次関数の総合演習を解いていこう問21からだこれは2つの絶対値に気をつけて場合分けして\(g\left( x \right) \)をグラフに図示するそして\(0<c<1\)のとき\(g\left( x \right) =c\)を満たす\(x\)を求めればいい次は問22。 (1)は2本の方程式を連立させて、\(x\)の2次方程式が判別式\(D=0\)となるとき、\({ C }_{ 1 }\)、\({ C }_{ 2 }\)がただ1つの共有点をもつ。 (2)も点\(P\)を通る直線が\({ C }_{ 1 }\)、\({ C }_{ 2 }\)と接するので連立させて判別式\(D=0\)から求めればいいそして問23。 (1)、(2)は普通に解けばいいだろう。 (3)は解の公式から求められた2解の差が\(2\)であればいい。 \(D>0\)に気をつけて計算すれば\(p\)、\(q\)が求められて頂点の座標が求まる今日はこれで終わり~

チャート式 数学1 part6【2次関数編】

  砂田 利一 (Escrito por) 数研出版 (Casa editorial de) 20031 de abril de 2016 (Fecha de lanzamiento) Libro (Formato) 今日から2次関数の総合演習をやっていこう問18からだ。 (1)は普通に計算すればいい。 (2)は2次関数を\(x\)軸方向に\(q\)、\(y\)軸方向に\(-2\)だけ平行移動し原点に対して対称移動せよというこれは\(x\)を\(x-q\)、\(y\)を\(y+2\)とした後で、\(x\)を\(-x\)、\(y\)を\(-y\)とおけばOKだ次は問19条件から\(z\)を消去して\(x\)の2次式とみて平方完成するさらに得られた頂点を\(y\)の2次式とみて平方完成すれば最小値が求まるみたいだそういうものかうまくできているんだな別解では下のように計算していた。 $$\begin{eqnarray*}{ x }^{ 2 }+4{ y }^{ 2 }+9{ z }^{ 2 }&=&{ \left( x-\frac { 1 }{ 3 } \right) }^{ 2 }+{ \left( 2y-\frac { 1 }{ 3 } \right) }^{ 2 }+{ \left( 3z-\frac { 1 }{ 3 } \right) }^{ 2 }\\ &+&2\cdot \frac { 1 }{ 3 } \left( x+2y+3z \right) -3{ \left( \frac { 1 }{ 3 } \right) }^{ 2 }\end{eqnarray*}$$ こうすると\(x+2y+3z=1\)を満たすようにうまいぐあいに平方完成されるでもこれはなかなか思いつかないな~あとはインターネットで調べてみたら\(Y=2y\)、\(Z=3z\)とおいて、3次元の平面と原点を中心とする球の関係に帰着させて解いている人がいたこのWebサイトに書かれていた平面と球が接するとき球の半径は最少になるのであとは距離の公式とかベクトルを使って解けるみたいなるほどな~数学Bのベクトルに進んだ頃にまた考えてみるかそして問20これは\(a\)の範囲で場合分けして最大値\(G\left( a \right) \)と最小値\(g\left( a \right) \)を求めるあとは\(a\)についてグラフを書いてそれぞれの最小値を求めればいいだろう今日はここで終わりにする

チャート式 数学1 part5【方程式と不等式編】

  砂田 利一 (Escrito por) 数研出版 (Casa editorial de) 20031 de abril de 2016 (Fecha de lanzamiento) Libro (Formato) 今日も進めていくぞ~問15からだ。 (1)は解の公式を利用して解を求め誘導にしたがって因数分解すればいい。 (2)は\(P\left( x,y \right) =0\)、\(x\)についての2次方程式と考えて解の公式で解くそして\(x=f\left( y \right) \)、\(x=g\left( y \right) \)とすると、\(P\left( x,y \right) =\left\{ x-f\left( y \right) \right\} \left\{ x-g\left( y \right) \right\} \)と因数分解できる、\(P\left( x,y \right)\)が\(x\)、\(y\)についての1次式の積として表されるので解の公式で求められた解の\(\sqrt { } \)内の\(y\)についての2次式が、\(y\)の1次式の平方数(2乗)の形にならないといけないこのとき\(y\)についての2次式は重解をもち判別式\(D=0\)ser。 これから\(k\)が求まる最初は\(P\left( x,y \right) =0\)を\(x\)についての2次式とみて解を求め次は出てきた解の\(y\)についての2次式に注目して判別式を利用するというおもしろい問題だったあと気になったのは $$x=\frac { -\left( 4+y \right) \pm \sqrt { { \left( 3y+2 \right) }^{ 2 } } }{ 2 } ,\frac { -\left( 4+y \right) \pm \sqrt { { \left( 3y-2 \right) }^{ 2 } } }{ 2 } $$ となったときの根号(\(\sqrt { } \))部分の計算についてだ通常は絶対値を付けて\(\left| 3y+2 \right| \)、\(\left| 3y-2 \right| \)とするそして\(y\)の値について場合分けして絶対値を外すことになるだろうしかし今回は解に\(\pm\)がついているので場合分けをしなくても結果は同じになるみたいだ。 $$\pm \sqrt { { \left( 3y+2 \right) }^{ … Continue readingチャート式 数学1 part5【方程式と不等式編】

チャート式 数学1 part4【方程式と不等式編】

砂田 利一 (Escrito por)数研出版 (Casa editorial de)20031 de abril de 2016 (Fecha de lanzamiento)Libro (Formato) 今日も解いていきます問12からだヒントによると\(x\)に関する2次方程式の解がすべて有理数となる条件は判別式\(D\)が平方数であることだというえ~っと、2次方程式\(a{ x }^{ 2 }+bx+c=0\)の解は解の公式を用いて次式で表される。 $$x=\frac { -b\pm \sqrt { { b }^{ 2 }-4ac } }{ 2a }=\frac { -b\pm \sqrt { D } }{ 2a }\tag{1} $$ 有理数とは分数\(\frac { m }{ n } \)(\(m\)、\(n\)は整数、\(n\neq 0\))の形で表される数であるというたしかに、\(a\)、\(b\)、\(c\)が整数のとき、\(\sqrt { D } \)が有理数なら\(x\)は有理数になる。\(\sqrt { D } \)が無理数なら有理数\(+\)無理数で\(x\)は無理数だな。En cuanto a mí $${ m }^{ 2 }-28={ l }^{ 2 }$$ (\(l\)は\(0\)以上の整数)とおいて、\(m\)の範囲を\(2\sqrt { 7 } \le m\le 14\)と見つけてから総当たりで探していった。sin embargo、回答を見るともっと簡単なやり方があったようだ。 $${ m }^{ 2 }-{ l }^{ 2 }=28$$ $$\left( m+l \right) \left( m-l \right) =28$$ として、\(m\)が自然数、\(l\)が\(0\)以上の整数であることと、\(m+l\)、\(m-l\)の差が偶数であり両者は奇数または偶数であることから、\(m+l=14\)、\(m-l=2\)と決まってしまうらしいこっちのほうが分かりやすいな次は問13A問題が終了ということでちょっと難しくなるのだろうかまぁやっていこう。(1)は普通に計算すればいいな。(2)も $$ac+bd=1\tag{1}$$ $$ad-bc=0\tag{2}$$ これら2式に\(a\)、\(b\)、\(c\)、\(d\)をかけて足したり引いたりして変形すると答えが求まるそして問14。(1)は簡単。(2)は分からなくて迷ったヒントには平方の差を作ると書いてあるがう~ん?しばらく悩んだがやはり分からなかったので答えを見たなんだそういうことだったのか係数が実数の範囲で因数分解するとは下のようなことをすればよかったらしい。 $$\begin{eqnarray*}{ x }^{ 6 }+1&=&\left( { x }^{ 2 }+1 \right) \left( { x }^{ 4 }-{ x }^{ 2 … Continue readingチャート式 数学1 part4【方程式と不等式編】