山椒魚
Yago井伏 鱒二 (Escrito por)
Shinchosha (Casa editorial de) / Shincho Bunko
1948年1月15日 (Fecha de lanzamiento)
Edición de bolsillo (Formato)
12編の短編集。
主に著者の初期作品の代表作らしい。
パラパラと読んだが、僕は表題作が気に入ったな。
岩屋から外へ出られなくなった山椒魚をユーモラスに描いている。
この動物について僕は全然詳しくないがなんとなくのんきな印象を持つので、閉じ込められちゃうやつもいるのかもしれないと思った。
El resto、巻末に書かれていた亀井勝一郎さんの『「山椒魚」について』という文章がよかった。
Artículos relacionados
- 神は数学者か?―ー数学の不可思議な歴史 マリオ・リヴィオ (Escrito por) / 千葉 敏生 (Traducción)Hayakawa Shobo (Casa editorial de)2017年9月21日 (Fecha de lanzamiento)Edición de bolsillo (Formato) 数学がなぜ自然界や宇宙を説明するのにこれほど効果的なのかという疑問に挑む本。数学は発見か(人間の存在とは関係なく宇宙にあらかじめ存在)、それとも発明(単なる人間の作り出したもの)なのだろうか?パラパラと読んだが、本書は数学史の側面を持ち、様々な数学者が書かれていた。超自然的?な話になるのかとも思ったのだが、内容は違って最後まで読むと納得できた。発明でも発見でもあり数学の限界があるのだ。アルキメデス、ガリレオ、デカルト、ニュートン等の人物はやはり偉大らしい。数学の理論は結果は変わらず何年経っても古くならないのだな。統計、非ユークリッド幾何学、対称性、局所性、アインシュタインの一般相対性理論などについても記述されていた。Además、ゲーデルの不完全性定理は絶対に知り得ない真理が存在するという意味ではないようだ。
- Tabla-Matemáticas A part5 [probabilidad] 柳川 高明 (Escrito por)数研出版 (Casa editorial de)20031 de abril de 2016 (Fecha de lanzamiento)Libro (Formato) 今回から確率の総合演習を解いていく。まずは問19。ヒントによると確率の計算の基本は全事象\(U\)の場合の数\(N\)と、事象\(A\)の起こる場合の数\(a\)を求めて、\(P\left( A \right) =\frac { a }{ N } \)とすることである。いま、さいころは異なるものと考えて、\(N={ 6 }^{ 4 }\)ser。El resto(1)~(4)について\(a\)を考えればいい。特に注意が必要なのは(4)かな。僕は最初解いたときに確率\(P\left( A \right)\)が\(1\)を超えてしまい、間違いに気づいた。ちなみに\(a={ _{ 6 }{ C }_{ 1 } }{ \times _{ 5 }{ C }_{ 2 }\times }{ _{ 4 }{ C }_{ 2 } }{ \times _{ 2 }{ C }_{ 1 } }\)と解けた。解答例とは違うやり方だが、同じ答えになる。 次は問20。円順列の問題だ。(2)、(3)で隣り合う人たちを1組と考えて円順列を計算するのがポイントかな。これは簡単だった。 その次は問21。(1)、(2)は簡単。(3)は独立試行の問題だ。独立な試行の確率は\(P\left( C \right) =P\left( A \right) P\left( B \right) \)と表されるので、普通に解けばいい。これも簡単だ。 最後は問22。これは反復試行の問題だ。反復試行の確率は次のようになるらしい。 $${ _{ n }{ C }_{ r }{ p }^{ r }{ q }^{ n-r } }\quad \left(ただしq=1-p \right) $$ あとは解ける、簡単簡単。と思ったら僕はこの問題を間違えてしまった。最後は必ず白玉を取り出さないといけなかったんだな。そうでないと、今の場合途中で白玉を3個取り出して、試行が終了してしまう。なるほどね。 今回はこれで終わり。僕は特に確率が得意というわけではないのだが、今日のこれらの問題は簡単だった。これはサクサク進むなぁ~意外と確率の問題は解きやすいのかもしれない。まぁまだA問題だから、徐々に難しくなるのかもしれないが。また次回やっていこう。
- チャート式 数学A part4【場合の数編】 柳川 高明 (Escrito por) 数研出版 (Casa editorial de) 20031 de abril de 2016 (Fecha de lanzamiento) Libro (Formato) 今日も場合の数の問題を解いていく。 まずは問15。 僕は次のようにして解いた。 Al principio、回転して重なる場合も異なる図形であるとすると、全ての塗り分け方は\({ 2 }^{ 9 }=512\)通りある。 また回転しても形が変わらない塗り分け方を数えると8通りある。 Además、回転したら形が2つになる塗り分け方は12通りある。 残りは回転したら形が4つになる塗り分け方である。 よってその塗り分け方は、 $$\frac { 512-\left( 8+2\times 12 \right) }{ 4 } =120$$ 通りである。 これらから、求める答えは $$8+12+120=140$$ 通りだ。 しかしこのやり方だと、回転したとき形が2つになる塗り分け方を数えるのが分かりにくい。 数えもれが出てしまう可能性が大だ。 解答例では9マスを中央の正方形と周りの4つの長方形に分けて計算していた。 長方形の塗り方は4通りで、この中から周りの4つの長方形がの塗り分け方が 1種類のとき 2種類のとき 3種類のとき 4種類のとき を場合分けして考えればいいという。 そういうものか~ 次は問16。 (1)、(2)は\(a=6\)なので南北方向の敷き詰め方は決まる。 あとは東西方向の長さに着目すればいい。 (3)はヒントによると、まず辺ABに沿った部分から敷くと4通りが考えられる。 Y、それらの場合の残り部分の敷き詰め方を考えればいい。 (1)、(2)のやり方も使って解いていくことになるが、僕は計算間違いをしてしまった。 なかなかミスが多くて困ったものだ。 その次は問17。 展開式の一般項は二項定理を用いて次式で表される。 $${ _{ m }{ C }_{ j } }{ \cdot _{ n }{ C }_{ k }{ x }^{ 2j+3k } }$$ あとは\({ x }^{ 6 }\)について\(2j+3k=6\)を満たす\(0\)以上の整数\(\left( j,k \right) \)を考えればいい。 そうしたら\(m\)の範囲を求めて、それぞれの\(m\)について\(n\)が存在するかを考える。 これで(1)が解けた。 (1)が分かれば(2)は簡単に解ける。 最後に問18。 (1)は背理法を使うなりして簡単に解ける。 まぁ背理法を使わなくても解けるみたいだけどな。 (2)はヒントによると以下のようにするのがポイントみたいだ。 $$\left( { 2 }^{ p-1 }-1 \right) \times…