
伊藤 計劃 (Escrito por) / redjuice (Ilustraciones)
Hayakawa Shobo (Casa editorial de) / ハヤカワ文庫JA
20148 de agosto de 2016 (Fecha de lanzamiento)
Edición de bolsillo (Formato)
日本SFの有名な小説なのかしら。
9・11以降の時代の世界についての内容だ。
作者は対談でほとんど資料調べをしないで書いたと話していたが、巻末の解説にあるサンプリング、参考文献の話もしっくりくる。
著者はもともとそういう知識があったのだろう。
この器官(ことば)はある事象に対する人間の生存適応だったらしい。
最後の方が僕には印象的だった。
Artículos relacionados
- ファイナルファンタジーXIV ララフェル先生の教えてやるよ!(1) ふぁっ熊 (Escrito por), Square Enix (Escrito por)Kadokawa (Casa editorial de) / 電撃コミックスEX2017年8月26日 (Fecha de lanzamiento)Versión Kindle (Formato) それになんで僕が新米だって分かるんですか? ブック ! これがおまえが初心者だという証拠だ えっ!? このゲームに慣れた者なら相手が本を出したらすぐ自分も本を出す ッ痛エ! ウソを教えないでください (p.6) 見た目はやっぱりミコッテ♀だとか。P.62の扉絵が印象に残った。#5のメディアミックスのパロディも惹きつけられる。巻末の学者ちゃんとエオルゼアも面白かった。タコトパスが愛したわこほアンドひよこ。学者という職業があるのだな。
- チャート式 数学1 part1【方程式と不等式編】 砂田 利一 (Escrito por) 数研出版 (Casa editorial de) 20031 de abril de 2016 (Fecha de lanzamiento) Libro (Formato) よし、今日からこの問題集を始めていくぞ~。 まずは第1章「方程式と不等式」からだ。 第1問、同志社女子大の問題だという。 これはただ式を展開すればいいだけだ。 計算が面倒だけどな。 \({ x }^{ 5 }\)の係数は\(-19\)、\({ x }^{ 3 }\)の係数は\(-23\)だろう。 ほい、正解~。 Según el comentario de、全部を展開しなくてもその次数の項にだけ注目すればいいみたい、Ya veo。 次は第2問。 同志社大の問題だ。 (1)は条件式から $$xyz=3\left( xy+yz+xz \right)\tag{1} $$ となり、あとは普通に与えられた式を展開して(1)式を代入すれば、都合よく\(\left( xy+yz+xz \right)\)の項が消えて答えが出る。 (2)はヒントによれば、 $${ x }^{ 3 }+{ y }^{ 3 }+{ z }^{ 3 }-3xyz=\left( x+y+z \right) \left( { x }^{ 2 }+{ y }^{ 2 }+{ z }^{ 2 }-xy-yz-zx \right) $$ という公式を利用するみたい。 この式を変形すると、 $${ x }^{ 3 }+{ y }^{ 3 }+{ z }^{ 3 }={ \left( x+y+z \right) }^{ 3 }-3\left( x+y+z \right) \left( xy+yz+zx \right) +3xyz $$ このようになって、El resto(1)と同様に式を代入すれば\({ x }^{ 3…
- チャート式 数学1 part2【方程式と不等式編】 砂田 利一 (Escrito por) 数研出版 (Casa editorial de) 20031 de abril de 2016 (Fecha de lanzamiento) Libro (Formato) 今日も進めていきます。 今回は問4からだ。 式を因数分解せよということで(1)~(10)まで式が10題並んでいる。 面倒だが計算するか。 (6)、(9)では以下の公式を使った。 $${ \left( a+b \right) }^{ 3 }={ a }^{ 3 }+3{ a }^{ 2 }b+3a{ b }^{ 2 }+{ b }^{ 3 }$$ $${ \left( a-b \right) }^{ 3 }={ a }^{ 3 }-3{ a }^{ 2 }b+3a{ b }^{ 2 }-{ b }^{ 3 }$$ $${ a }^{ 3 }+{ b }^{ 3 }=\left( a+b \right) \left( { a }^{ 2 }-ab+{ b }^{ 2 } \right) $$ $${ a }^{ 3 }-{ b }^{ 3 }=\left( a-b \right) \left( { a }^{ 2…