上村 豊 (Escrito por)
Kodansha (Casa editorial de) / Bluebacks
201419 de diciembre de (Fecha de lanzamiento)
Nuevo libro (Formato)
逆問題について書かれた数学の本。
原因から結果を予測するのが順問題で、逆に結果から原因を探るのが逆問題だという。
逆問題の哲学は現象から自然を探ることにあると著者は言う。
ギャグが多用されて話が進められていくが、内容はなかなか難しい。
行列の連立1次方程式という線形代数の分野があったり、恐竜絶滅の原因を探る生物学?に話が及んだり、プランクのエネルギー量子発見についての理論物理学の分野が紹介されていたりする。
他にも海洋物理学や量子力学の分野について述べられていたりと様々なテーマにおける逆問題が、実際に計算式を示しながら説明されてゆく。
僕はよく分からない部分もあったが、感覚で、そういうものなのかと式を流し読みしながらパラパラと読み進めていった。
あとがきで著者は次のように述べている。
現代科学において、逆問題の発想は仮説を法則や原理へと昇華させるために初期のそして重要な段階で、決定的な役割を果たしてきた。そう見るべきであろう。
(p.259)
逆問題という用語も概念もまだ生まれていなかった過去においても、科学者は模索から生じた仮説に基づく逆問題を解くことによって理論を先へ進めてきたみたいだ。
なるほどな~。
僕ももっと勉強しないとなと思いました。
Artículos relacionados
- Animales de Japón visto desde el geek postmoderno 東 浩紀 (Escrito por)Kodansha (Casa editorial de) / 講談社現代新書2001年11月20日 (Fecha de lanzamiento)Nuevo libro (Formato) オタクたちの文化や行動から日本のポストモダンを分析したような本。ポストモダンは1960年代、1970年代以降の文化的世界のことで、大きな物語の凋落が起きているみたい。シミュラークルが宿る表層=小さな物語と、データベースが宿る深層=大きな非物語の二層構造になっているのがポストモダンのモデルだと著者は主張する。メディアミックス、萌え要素、キャラ萌えもこの観点から説明できるらしい。Además、動物化というものも起こっていて、シミュラークルの水準での動物性と、データベースの水準での人間性が解離的に共存しているという。なるほどな~ あとは、機動戦艦ナデシコとかセイバーマリオネットJとか、この世の果てで恋を唄う少女YU-NOの話題がでてきて、懐かしいと思いました。僕はほぼ未見だが、当時話題になっていたから名前は知っている…
- チャート式 数学1 part6【2次関数編】 砂田 利一 (Escrito por) 数研出版 (Casa editorial de) 20031 de abril de 2016 (Fecha de lanzamiento) Libro (Formato) 今日から2次関数の総合演習をやっていこう。 問18からだ。 (1)は普通に計算すればいい。 (2)は2次関数を\(x\)軸方向に\(q\)、\(y\)軸方向に\(-2\)だけ平行移動し、原点に対して対称移動せよという。 これは\(x\)を\(x-q\)、\(y\)を\(y+2\)とした後で、\(x\)を\(-x\)、\(y\)を\(-y\)とおけばOKだ。 次は問19。 条件から\(z\)を消去して\(x\)の2次式とみて平方完成する。 さらに得られた頂点を\(y\)の2次式とみて平方完成すれば最小値が求まるみたいだ。 そういうものか。 うまくできているんだな。 別解では下のように計算していた。 $$\begin{eqnarray*}{ x }^{ 2 }+4{ y }^{ 2 }+9{ z }^{ 2 }&=&{ \left( x-\frac { 1 }{ 3 } \right) }^{ 2 }+{ \left( 2y-\frac { 1 }{ 3 } \right) }^{ 2 }+{ \left( 3z-\frac { 1 }{ 3 } \right) }^{ 2 }\\ &+&2\cdot \frac { 1 }{ 3 } \left( x+2y+3z \right) -3{ \left( \frac { 1 }{ 3 } \right) }^{ 2 }\end{eqnarray*}$$ こうすると\(x+2y+3z=1\)を満たすようにうまいぐあいに平方完成される。 でもこれはなかなか思いつかないな~。 あとはインターネットで調べてみたら\(Y=2y\)、\(Z=3z\)とおいて、3次元の平面と原点を中心とする球の関係に帰着させて解いている人がいた。 このWebサイトに書かれていた。 平面と球が接するとき球の半径は最少になるので、あとは距離の公式とかベクトルを使って解けるみたい。 なるほどな~。 数学Bのベクトルに進んだ頃にまた考えてみるか。 そして問20。 これは\(a\)の範囲で場合分けして、最大値\(G\left( a \right)…
- チャート式 数学A part3【場合の数編】 柳川 高明 (Escrito por)数研出版 (Casa editorial de)20031 de abril de 2016 (Fecha de lanzamiento)Libro (Formato) 今日から第1章「場合の数」の総合演習B問題を解いていく。まずは問11からだ。(A)の条件から、正の整数\(m\)は\(2\)を素因数にもたず、\(9={ 3 }^{ 2 }\)を因数にもつと分かる。(1)は背理法で証明すればいい。\(m\)の正の約数で素数となるものが3つ以上あるとする。それらを\(3\)、\(p\)、\(q\)、…とする。ただし\(p\)、\(q\)、…は\(5\)以上の素数である。すると\(m\)は以下のように素因数分解される。 $$m={ 3 }^{ k }{ p }^{ a }{ q }^{ b }\cdot \cdots \quad \left( k\ge 2,\quad a\ge 1,\quad b\ge 1,\quad \cdots \right) $$ このとき\(m\)の正の約数の個数は次式で表される。 $$\left( k+1 \right) \left( a+1 \right) \left( b+1 \right) \cdots $$ 今、これは\(12\)以上となり、条件(B)に適さない。よって\(m\)の正の約数で素数となるものは高々2個だ。なるほどな~ (2)は\(m\)の正の約数となる素数が、 \(3\)のみ \(3\)と\(5\)以上の素数\(p\) の場合の2通りを考えればいい。おもしろい問題だったな。 次は問12。(1)は、僕は以下の4通りに分けて計算して足し合わせて、暗証番号の総数から引いた。 同じ番号が2つずつの2組がある場合 同じ番号が2つの1組がある場合 同じ番号が3つ続く場合 同じ番号が4つ続く場合 だが、解答例を見ると同じ数字が続かない番号の個数ということで、\(10\times 9\times 9\times 9\)と簡単に求められるみたいだ。そういうものか。 (2)はヒントによると\(0\sim 9\)は対等である。よって\(a=0\)の場合を数えて10倍すれば答えが出るらしい。解き方としては以下の3通りに分けて数え上げればいいとのことだ。 \(b=2\)の場合 \(b=8\)の場合 \(b=3,4,\cdots , 7\) En cuanto a mí、ヒントがないとこれは気付かなかっただろう。う~ん、難しいな。 その次は問13。同じものを含む順列の問題だ。(1)は(両端の文字が異なる)\(=\)(全体)\(-\)(両端の文字が同じ)、として解けばいい。(2)は以下のように場合分けする。 文字が全て異なるとき 同じ文字2個を1組だけ含むとき 同じ文字を2個ずつ2組含むとき 同じ文字を3個含むとき この問題は解きやすいほうだったかな。 最後に問14。ヒントにあるように、\(x\)座標から\(S\)、\(T\)の回数の和が、\(y\)座標から\(S\)、\(T\)の回数の差が分かる。(2)、(3)について僕は樹形図を書いて解いた。そんなに複雑でないので力技でも解けるみたいだ。題意を満たすように解くと、点\(\left( 1,1 \right) \)から点\(\left( 7,1 \right) \)へ移る途中に、ある点Pで\(x\)軸上にあるとする。このとき、点P以降の経路で\(S\)と\(T\)を入れ替えると点\(\left( 7,-1 \right) \)に移ることを利用するという。\(S\)と\(T\)を入れ替えても、同じものを含む順列の個数は変わらないからな。点P以前の経路は共通でなので、(点P以前の経路の数)\(\times \)(点P以降の経路の数)は等しい。結局点Pから\(x\)軸を通って点\(\left( 7,1 \right) \)へ移る場合と、点Pから点\(\left( 7,-1 \right) \)に移る場合は同じ場合の数となるみたい。ちょっと分かりにくい問題だった。 今日はこれで終わりにする。