砂田 利一 (Escrito por)
数研出版 (Casa editorial de)
20031 de abril de 2016 (Fecha de lanzamiento)
Libro (Formato)
今日も解いていきます。
問48からだ。
ヒントにあるように\(\sin { \theta } =\tan { \theta } \cos { \theta } \)に気づくと、\(f\left( \theta \right) \)が積の形に変形できるので、これを利用する。
(1)は普通に解けばいい。
(2)は\(f\left( \theta \right)<0 \)なので、積の2つの項が\(0\)より大きいものと小さいものである場合である。
El resto\(0°<\theta <180°\)(ただし\(\theta \neq 90°\))のとき、\(\tan { \theta } <1\)となるのは\(0°<\theta <45°\)、\(90°<\theta <180°\)に注意して解くといい。
僕はうっかりミスしてしまった。
気をつけないといけないな。
次は問49。
Esto es
$$\sin ^{ 2 }{ x } +\cos ^{ 2 }{ x } =1$$
$$\sin ^{ 2 }{ y } +\cos ^{ 2 }{ y } =1$$
という公式を使うと、変数が4つで式が4本になるので連立させていくと方程式が解ける。
僕は以下のような三角関数の合成の公式を使って解いた。
$$a\sin { \theta } +b\cos { \theta } =\sqrt { { a }^{ 2 }+{ b }^{ 2 } } \sin { \left( \theta +\alpha \right) } $$
$$(ただし、\cos { \alpha } =\frac { a }{ \sqrt { { a }^{ 2 }+{ b }^{ 2 } } } ,\quad \sin { \alpha } =\frac { b }{ \sqrt { { a }^{ 2 }+{ b }^{ 2 } } } )$$
この公式を使わなくても解けるようだけどな。
この問題はまぁ簡単だった。
次は問50。
与えられた\(f\left( \theta \right) \)の式から\(\sin { \theta } \)を消して、\(\cos { \theta } \)のみの式とする。
El resto\(\cos { \theta }=t \)などとおいて\(f\left( t \right) =a{ t }^{ 2 }+2t-a\)とし、\(t\)の範囲において場合分けをして、2次関数の最小値を求めればいい。
ここで\(a=0\)の場合と\(a>0\)の場合、\(a<0\)の場合に分けないといけないことに注意だ。
僕はこれを忘れて、また間違えてしまった。
それでおかしな答えになってしまったんだな。
最後に問51。
三角形と外接円の問題だ。
(1)は正弦定理で普通に解ける。
(2)は解答例によると、\(r+R\)が\(AP\)で表されるので、\(AP\)のとり得る範囲を考えればいいらしい。
Aから辺BCに垂線AHを下ろしたりすればOKみたいだ。
En cuanto a mí\(\angle CAP=\alpha \)とおいて、\(0°<\alpha <75°\)であることから\(r+R\)の範囲を求めた。
ただ、三角関数の加法定理、合成公式を使って計算したので、計算が複雑になってしまった。
時間はかかるし、計算ミスする危険性も増える。
正答例のように計算するのが簡単だな。
今日はここで終わり~。
次回で第3章「図形と計量」を終われるといいな。
Artículos relacionados
- チャート式 数学1 part13【図形と計量編】 砂田 利一 (Escrito por) 数研出版 (Casa editorial de) 20031 de abril de 2016 (Fecha de lanzamiento) Libro (Formato) 第3章「図形と計量」に進んだ。 総合演習をAから解いていこう。 三角比とかが出題されるみたいだな。 まずは問38。 僕はいろいろな公式を使って式を変形して解いた。 以下のようなものだ。 $$\sin ^{ 2 }{ \alpha =\frac { 1-\cos { 2\alpha } }{ 2 } } $$ $$\cos ^{ 2 }{ \alpha =\frac { 1+\cos { 2\alpha } }{ 2 } } $$ $$\sin { \left( 90°-\alpha \right) } =\cos { \alpha } $$ $$\cos { \left( 90°-\alpha \right) } =\sin { \alpha } $$ Pero、今\(\alpha =22.5°\)なので\(3\alpha =90°-\alpha \)、\(5\alpha =180°-3\alpha \)、\(7\alpha =180°-\alpha \)であることに注目すれば、式が\(\sin { \alpha } \)、\(\cos { \alpha } \)のみで表されて、もっと簡単になったみたいだ。 次は問39。 以下の公式を用いて、変形していけば簡単に解ける。 $$\sin ^{ 2 }{ \theta + } \cos ^{ 2 }{ \theta =1…
- チャート式 数学A part3【場合の数編】 柳川 高明 (Escrito por)数研出版 (Casa editorial de)20031 de abril de 2016 (Fecha de lanzamiento)Libro (Formato) 今日から第1章「場合の数」の総合演習B問題を解いていく。まずは問11からだ。(A)の条件から、正の整数\(m\)は\(2\)を素因数にもたず、\(9={ 3 }^{ 2 }\)を因数にもつと分かる。(1)は背理法で証明すればいい。\(m\)の正の約数で素数となるものが3つ以上あるとする。それらを\(3\)、\(p\)、\(q\)、…とする。ただし\(p\)、\(q\)、…は\(5\)以上の素数である。すると\(m\)は以下のように素因数分解される。 $$m={ 3 }^{ k }{ p }^{ a }{ q }^{ b }\cdot \cdots \quad \left( k\ge 2,\quad a\ge 1,\quad b\ge 1,\quad \cdots \right) $$ このとき\(m\)の正の約数の個数は次式で表される。 $$\left( k+1 \right) \left( a+1 \right) \left( b+1 \right) \cdots $$ 今、これは\(12\)以上となり、条件(B)に適さない。よって\(m\)の正の約数で素数となるものは高々2個だ。なるほどな~ (2)は\(m\)の正の約数となる素数が、 \(3\)のみ \(3\)と\(5\)以上の素数\(p\) の場合の2通りを考えればいい。おもしろい問題だったな。 次は問12。(1)は、僕は以下の4通りに分けて計算して足し合わせて、暗証番号の総数から引いた。 同じ番号が2つずつの2組がある場合 同じ番号が2つの1組がある場合 同じ番号が3つ続く場合 同じ番号が4つ続く場合 だが、解答例を見ると同じ数字が続かない番号の個数ということで、\(10\times 9\times 9\times 9\)と簡単に求められるみたいだ。そういうものか。 (2)はヒントによると\(0\sim 9\)は対等である。よって\(a=0\)の場合を数えて10倍すれば答えが出るらしい。解き方としては以下の3通りに分けて数え上げればいいとのことだ。 \(b=2\)の場合 \(b=8\)の場合 \(b=3,4,\cdots , 7\) En cuanto a mí、ヒントがないとこれは気付かなかっただろう。う~ん、難しいな。 その次は問13。同じものを含む順列の問題だ。(1)は(両端の文字が異なる)\(=\)(全体)\(-\)(両端の文字が同じ)、として解けばいい。(2)は以下のように場合分けする。 文字が全て異なるとき 同じ文字2個を1組だけ含むとき 同じ文字を2個ずつ2組含むとき 同じ文字を3個含むとき この問題は解きやすいほうだったかな。 最後に問14。ヒントにあるように、\(x\)座標から\(S\)、\(T\)の回数の和が、\(y\)座標から\(S\)、\(T\)の回数の差が分かる。(2)、(3)について僕は樹形図を書いて解いた。そんなに複雑でないので力技でも解けるみたいだ。題意を満たすように解くと、点\(\left( 1,1 \right) \)から点\(\left( 7,1 \right) \)へ移る途中に、ある点Pで\(x\)軸上にあるとする。このとき、点P以降の経路で\(S\)と\(T\)を入れ替えると点\(\left( 7,-1 \right) \)に移ることを利用するという。\(S\)と\(T\)を入れ替えても、同じものを含む順列の個数は変わらないからな。点P以前の経路は共通でなので、(点P以前の経路の数)\(\times \)(点P以降の経路の数)は等しい。結局点Pから\(x\)軸を通って点\(\left( 7,1 \right) \)へ移る場合と、点Pから点\(\left( 7,-1 \right) \)に移る場合は同じ場合の数となるみたい。ちょっと分かりにくい問題だった。 今日はこれで終わりにする。
- チャート式 数学1 part12【2次関数編】 砂田 利一 (Escrito por) 数研出版 (Casa editorial de) 20031 de abril de 2016 (Fecha de lanzamiento) Libro (Formato) 今日で2次関数編がラストだ。 問36からやっていこう。 ヒントにあるように以下のようにする。 $$\begin{eqnarray*}f\left( x \right) &=&{ x }^{ 2 }-ax+b-\left( -{ x }^{ 2 }-bx+a \right) \\ &=&2{ x }^{ 2 }-\left( a-b \right) x-\left( a-b \right) \end{eqnarray*}$$ そして\(a-b=t\left( t\neq 0 \right) \)などとおいて、\(f\left( x \right) \)について\(f\left( x \right) <0\)を満たす実数\(x\)が必ず存在するので、2次関数の頂点の\(y\)座標は\(0\)より小さい。 よって\(T>0\)、\(T<-8\)となる。 あとはヒントにあるように放物線\(y=f\left( x \right) \)の軸は直線\(x=\frac { T }{ 4 } \)なのでこの軸に最も近い整数を考えればいい。 僕はここから悩んでしまって、次のようにした。 \(\frac { T }{ 4 } \)に最も近い整数は、 $$t=4k\left(kは0,-1,-2を除く整数 \right)のときはn=k$$ $$4k<t\le 4k+2\left(kは-1,-2を除く整数 \right)のときはn=k$$ $$4k+2<T< 4\left( k+1 \right) \left(kは-1,-2を除く整数 \right)のときはn=k+1$$ そして\(x=n\)を\(f\left( x \right)\)に代入すると\(f\left( x \right)\)は\(t\)の1次式と見ることができる。 あとは考えている\(t\)の範囲において、これまた\(k\)の範囲についても考慮しながら最大値の議論をしていくと、\(f\left( n \right) \le -2\)または\(f\left( n \right) < 0\)と分かり、題意を満たす整数\(n\)が必ず存在すると分かった。 解くのにかなり時間がかかってしまった… 実際の試験だったら時間がかかりすぎてしまって、僕は明らかにこの問題を解けていないだろう。 sin embargo、正答例ではもっと簡単に解いていた。 $$T<-8のときf\left( -2 \right) =8+t<0$$…