砂田 利一 (Escrito por)
数研出版 (Casa editorial de)
20031 de abril de 2016 (Fecha de lanzamiento)
Libro (Formato)
第3章「図形と計量」に進んだ。
総合演習をAから解いていこう。
三角比とかが出題されるみたいだな。
まずは問38。
僕はいろいろな公式を使って式を変形して解いた。
以下のようなものだ。
$$\sin ^{ 2 }{ \alpha =\frac { 1-\cos { 2\alpha } }{ 2 } } $$
$$\cos ^{ 2 }{ \alpha =\frac { 1+\cos { 2\alpha } }{ 2 } } $$
$$\sin { \left( 90°-\alpha \right) } =\cos { \alpha } $$
$$\cos { \left( 90°-\alpha \right) } =\sin { \alpha } $$
Pero、今\(\alpha =22.5°\)なので\(3\alpha =90°-\alpha \)、\(5\alpha =180°-3\alpha \)、\(7\alpha =180°-\alpha \)であることに注目すれば、式が\(\sin { \alpha } \)、\(\cos { \alpha } \)のみで表されて、もっと簡単になったみたいだ。
次は問39。
以下の公式を用いて、変形していけば簡単に解ける。
$$\sin ^{ 2 }{ \theta + } \cos ^{ 2 }{ \theta =1 } $$
$${ a }^{ 3 }+{ b }^{ 3 }={ \left( a+b \right) }^{ 3 }-3ab\left( a+b \right) $$
そして問40。
これは与えられた式を変形して、\(\sin { \theta } \)についての2次式とする。
El resto\(\sin { \theta } =t\)などとおいて、\(t\)の範囲に気をつけて最大値を求めればいい。
簡単簡単。
その次は問41だ。
これは正弦定理、加法定理を使って計算すればいいだろう。
使った公式は以下のようなものだ。
$$\frac { a }{ \sin { A } }= \frac { b }{ \sin { B } }= \frac { c }{ \sin { C } } =2R$$
$$\sin { \left( \alpha +\beta \right) =\sin { \alpha } \cos { \beta } +\cos { \alpha } \sin { \beta } } $$
一方で、解答例では頂点Aから対角線BDに垂線を下して計算していた。
これを第1余弦定理と言うらしい。
$$a=b\cos { C } +c\cos { B } $$
$$a=c\cos { A } +a\cos { C } $$
$$a=a\cos { B } +b\cos { A } $$
まぁそのようにしてもいいだろう。
最後に問42。
僕は三角形の面積についての公式と余弦定理(第2余弦定理)を使って解いた。
以下のような公式だ。
$$S=\frac { 1 }{ 2 } bc\sin { A } =\frac { 1 }{ 2 } ca\sin { B } =\frac { 1 }{ 2 } ab\sin { C } $$
$${ a }^{ 2 }={ b }^{ 2 }+{ c }^{ 2 }-2bc\cos { A } $$
$${ b }^{ 2 }={ c }^{ 2 }+{ a }^{ 2 }-2ca\cos { B } $$
$${ c }^{ 2 }={ a }^{ 2 }+{ b }^{ 2 }-2ab\cos { C } $$
正答例では角の二等分線の性質を利用して解いていた。
\(\angle A\)の二等分線がADのとき、\(BD:CD=AB:AC\)Tipo dijo。
Ya veo。
今日はここで終わりにしよう。
A問題ということでまだまだ今回は簡単だったな。
Artículos relacionados
- チャート式 数学1 part15【図形と計量編】 砂田 利一 (Escrito por) 数研出版 (Casa editorial de) 20031 de abril de 2016 (Fecha de lanzamiento) Libro (Formato) 今日も解いていきます。 問48からだ。 ヒントにあるように\(\sin { \theta } =\tan { \theta } \cos { \theta } \)に気づくと、\(f\left( \theta \right) \)が積の形に変形できるので、これを利用する。 (1)は普通に解けばいい。 (2)は\(f\left( \theta \right)<0 \)なので、積の2つの項が\(0\)より大きいものと小さいものである場合である。 あとは\(0°<\theta <180°\)(ただし\(\theta \neq 90°\))のとき、\(\tan { \theta } <1\)となるのは\(0°<\theta <45°\)、\(90°<\theta <180°\)に注意して解くといい。 僕はうっかりミスしてしまった。 気をつけないといけないな。 次は問49。 これは $$\sin ^{ 2 }{ x } +\cos ^{ 2 }{ x } =1$$ $$\sin ^{ 2 }{ y } +\cos ^{ 2 }{ y } =1$$ という公式を使うと、変数が4つで式が4本になるので連立させていくと方程式が解ける。 僕は以下のような三角関数の合成の公式を使って解いた。 $$a\sin { \theta } +b\cos { \theta } =\sqrt { { a }^{ 2 }+{ b }^{ 2 } } \sin { \left( \theta +\alpha…
- Tabla de matemáticas 1 part16 [forma y peso] 砂田 利一 (Escrito por)数研出版 (Casa editorial de)20031 de abril de 2016 (Fecha de lanzamiento)Libro (Formato) 今日で第3章「図形と計量」が終わりだ。つまりはこの問題集「チャート式 数学1」が終わりということになる。最後なのでがんばっていこう。 まずは問52。4辺の長さが分かっているが、角度が分からない凸四角形ABCDについて、\(\triangle \)ABDの面積を\(S\)、\(\triangle \)BCDの面積を\(T\)とする。(1)は\({ S }^{ 2 }+{ T }^{ 2 }\)のとりうる値の範囲を求めよという問題だ。ヒントにあるように\(\angle DAB=\alpha \)とおくと、余弦定理や面積の公式などから\({ S }^{ 2 }+{ T }^{ 2 }\)は\(\cos { \alpha } \)の2次式として表される。あとは\(\cos { \alpha } =t\)などとおいて、計算すればいい。 ただここで問題なのは\(\alpha \)の範囲である。条件としては四角形ABCDが凸四角形であるということだ。ヒントによると凸四角形とは内角が4つとも\(180°\)より小さい四角形だという。Qué quieres decir、四角形の4つの角について以下が成り立つ。 $$0°<\angle A,\angle B,\angle C,\angle D<180°$$ $$\angle A+\angle B+\angle C+\angle D=360°$$ また、余弦定理から以下の関係も求められる。 $$\cos { \angle C } =-1+\sqrt { 3 } \cos { \angle A } $$ $$\cos { \angle D } =-1+\sqrt { 3 } \cos { \angle B } $$ 他にも正弦定理からも方程式が求められる…となんとか\(\angle A=\alpha\)の範囲を計算しようと思ったが、あまりに面倒なのでやめた… 次に僕は三角形の成立条件を考えてみた。 $$\left| b-c \right| <a<b+c$$ という三角形の辺の関係式だ。しかしこれだと\(0°<\alpha <90°\)となってしまうのだ。正答は\(30°<\alpha <90°\)ser。やはり今回は凸四角形の条件ということで、三角形の成立条件ではうまくいかないみたいだ。三角形の成立条件だけだと、ブーメランみたいな形の四角形でもOKということになってしまうからな。 解答例によると実際に図示してみて考えるといいらしい。今回は\(\angle C\)および\(\angle D\)が\(180°\)となるときに、うまいこと四角形ABCDが直角三角形になる。これにより\(\alpha\)の範囲が求められるという。計算ではなかなか範囲を求めるのは難しいので、図を描いてみるというのが正解だったんだな~…(1)が分かれば(2)は簡単だ。 次は問53。正五角形についての問題だ。これはヒントにあるように、正五角形\(F\)と正五角形\(G\)が相似のとき、長さが\(k\)倍なら面積は\({ k }^{ 2 }\)倍であることを利用すればいいみたい。平面図形がなんであれ、相似なら面積は\({ k…
- チャート式 数学1 part10【2次関数編】 砂田 利一 (Escrito por)数研出版 (Casa editorial de)20031 de abril de 2016 (Fecha de lanzamiento)Libro (Formato) 今日も2次関数のB問題を進めていこう。問30からだ。(1)は普通に場合分けをして絶対値を外せばいい。(2)がこの問題のポイントとなるところだろう。【1】\(x\ge a\)のとき、\(a\ge \frac { 1 }{ 2 } \)の場合と\(a<\frac { 1 }{ 2 } \)の場合で最小値\(m\left( a \right) \)が異なるので、場合分けする。同様に【2】\(x<a\)のときは、\(a>-\frac { 1 }{ 2 } \)の場合と\(a\le -\frac { 1 }{ 2 } \)の場合で場合分けが必要だ。そしたら\(a\ge \frac { 1 }{ 2 } \)、\(-\frac { 1 }{ 2 } <a<\frac { 1 }{ 2 } \)、\(a\le -\frac { 1 }{ 2 } \)の場合で【1】と【2】のそれぞれの差をとってどちらがより小さいかを明らかにし、関数\(f\left( x \right) \)の最小値\(m\left( a \right) \)を求めることになる。僕はグラフを見てなんとなく直感で解いたが、それではダメだったんだな。しっかり場合分けが必要みたいだ。(3)は(2)がちゃんと解けていれば簡単だ。 次は問31。Primero(1)。今\(a\)、\(b\)、\(x\)、\(y\)全てが正の実数なので、以下の不等式 $$\frac { x }{ a } \le \frac { y }{ b } $$ の両辺に\(ab\)をかけたり、2乗したりしても、不等号の向きは変わらないし、通常は2乗することで生じる余計な解が含まれることもない。あとは条件式を利用して\({ y }^{ 2 }\)を消去すればいい。(2)は(1)から\(0\le x\le \frac { a }{ \sqrt { { a }^{…