砂田 利一 (Escrito por)
数研出版 (Casa editorial de)
20031 de abril de 2016 (Fecha de lanzamiento)
Libro (Formato)
今日で2次関数編がラストだ。
問36からやっていこう。
ヒントにあるように以下のようにする。
$$\begin{eqnarray*}f\left( x \right) &=&{ x }^{ 2 }-ax+b-\left( -{ x }^{ 2 }-bx+a \right) \\
&=&2{ x }^{ 2 }-\left( a-b \right) x-\left( a-b \right) \end{eqnarray*}$$
Y\(a-b=t\left( t\neq 0 \right) \)などとおいて、\(f\left( x \right) \)について\(f\left( x \right) <0\)を満たす実数\(x\)が必ず存在するので、2次関数の頂点の\(y\)座標は\(0\)より小さい。
よって\(t>0\)、\(t<-8\)となる。
あとはヒントにあるように放物線\(y=f\left( x \right) \)の軸は直線\(x=\frac { t }{ 4 } \)なのでこの軸に最も近い整数を考えればいい。
僕はここから悩んでしまって、次のようにした。
\(\frac { t }{ 4 } \)に最も近い整数は、
$$t=4k\left(kは0,-1,-2を除く整数 \right)のときはn=k$$
$$4k<t\le 4k+2\left(kは-1,-2を除く整数 \right)のときはn=k$$
$$4k+2<t< 4\left( k+1 \right) \left(kは-1,-2を除く整数 \right)のときはn=k+1$$
Y\(x=n\)を\(f\left( x \right)\)に代入すると\(f\left( x \right)\)は\(t\)の1次式と見ることができる。
あとは考えている\(t\)の範囲において、これまた\(k\)の範囲についても考慮しながら最大値の議論をしていくと、\(f\left( n \right) \le -2\)または\(f\left( n \right) < 0\)と分かり、題意を満たす整数\(n\)が必ず存在すると分かった。
解くのにかなり時間がかかってしまった…
実際の試験だったら時間がかかりすぎてしまって、僕は明らかにこの問題を解けていないだろう。
sin embargo、正答例ではもっと簡単に解いていた。
$$t<-8のときf\left( -2 \right) =8+t<0$$
$$t>0のときf\left( 0 \right) =-t<0$$
だというのである。
こんな簡単に解けるとは…
これには気づかなかったな。
\(t>0\)で\(t\)がどんどん大きくなっていくと、軸\(x=\frac { t }{ 4 } \)も大きくなっていく。
それにしたがって、頂点の\(y\)座標\(g\left( t \right) \)はどんどん小さくなっていく。
$$g\left( t \right) =-\frac { 1 }{ 8 } { t }^{ 2 }-t=-\frac { 1 }{ 8 } { \left( t+4 \right) }^{ 2 }+2$$
\(t<-8\)の場合も\(t\)が小さくなると、軸\(x=\frac { t }{ 4 } \)は小さくなっていき、\(g\left( t \right) \)も小さくなっていく。
\(g\left( t \right) \)が小さいほど\(f\left( n \right)<0 \)を満たす整数\(n\)は存在しやすくなるだろうから、結局一番クリティカルなのは\(t=0\)、\(t=-8\)の所で、そのときの軸は\(x=0\)と\(x=-2\)ser。
これを調べればいいということなのかな。
そして問37。
Esto es\(x\)についての2次方程式が\(0\)と\(1\)の間に少なくとも1つの解をもつような定数\(a\)の範囲を求めよというものだ。
あとはひたすら場合分けして解いていけばいいのだが、これがなかなか分かりにくくて面倒だった。
正答例のように次のように分けるのが分かりやすいかな。
- 1つの解が\(0\)のとき
- 1つの解が\(1\)のとき
- 1つの解が\(0\)と\(1\)の範囲にあり、他の解が\(0\)と\(1\)を含まない範囲にあるとき
- 2つの解がともに\(0\)と\(1\)の間にあるとき(重解を含む)
3の条件は\(f\left( 0 \right) f\left( 1 \right) <0\)と簡単に書けるという。
Esto es\(f\left( p \right) f\left( q \right) <0\)なら\(p\)と\(q\)の間に解があるという関係による。
なるほどな~。
別解にあるように以下のように変形して、
$${ x }^{ 2 }+x+2=-\frac { 7 }{ a } \left( x-1 \right) $$
\(y={ x }^{ 2 }+x+2\)と\(y=-\frac { 7 }{ a } \left( x-1 \right)\)が\(0<x<1\)で共有点を持つと考えてもいい。
グラフで図示して考えれば答えが求まる。
よし、これで2次関数の総合演習は終わりだ。
疲れた…
2次関数の計算は場合分けが面倒だな~
今度からは第3章「図形と計量」に進んでいこう。
Artículos relacionados
- Gráfico Fórmula Matemáticas 1 parte3 [Ecuaciones y desigualdad] 砂田 利一 (Escrito por) 数研出版 (Casa editorial de) 20031 de abril de 2016 (Fecha de lanzamiento) Libro (Formato) 今日も問題を解いていこう。 問8からだ。 (1)では与えられた方程式が\(x=0\)のときには成り立たないので、\(x\neq 0\)と分かる。 よってこの方程式を\({ x }^{ 2 }\)で割ることができる。 あとは普通に解けばいいな。 (2)は実数解を求めよとのこと。 判別式\(D\)が\(D\ge 0\)のとき2次方程式は実数解を持つ。 これに注意して計算すればOKだ。 そして問9。 Aのポンプから注がれる水の量を\(x\)(L/h)、Bのポンプから注がれる水の量を\(y\)(L/h)、貯水池の水の総量を\(z\)(L)などとおく。 このとき、\(x,y>0\)ser。 あとは方程式を2つ立てて\(z\)を消去し、\(x\)を\(y\)で表す。 求める時間は\(\frac { z }{ y } \)で表されて、これに代入すれば終わりだな。 しかし僕は途中で計算ミスをして間違えてしまった。 気をつけないといけない。 次は問10。 ヒントによるとこの条件式は比例式というもので、比例式\(=k\)などとおいて、\(x\)、\(y\)、\(z\)についての連立方程式とみて、\(x\)、\(y\)、\(z\)を\(k\)で表せばいいらしい。 あとは代入して計算すればいい。 僕はヒントを見落としていたので、\(k\)とはおかずに\(y\)、\(z\)を\(x\)で表して解いた。 まぁそれでもいいだろうけど、比例式は\(k\)とおくのが鉄則みたいだな。 最後に問11。 \(Ax=0\)が\(x=0\)でない解を持つなら、\(A\)は正則行列でないということを大学の線形代数の講義で学んだ気がする… つまり\(A\)は逆行列を持たないということだ。 $$\begin{pmatrix} 1-k & 2 \\ 3 & 2-k \end{pmatrix}\left( \begin{matrix} x \\ y \end{matrix} \right) =\left( \begin{matrix} 0 \\ 0 \end{matrix} \right) $$ 上の式で\(A=\begin{pmatrix} 1-k & 2 \\ 3 & 2-k \end{pmatrix}\)として、逆行列を持たないとき\(\Delta =\left( 1-k \right) \left( 2-k \right) -6=0\)ser。 これで\(k\)が求まる。 ヒントにあるように、行列を使わないで普通に\(y\)を消去して\(Ax=0\)として、\(x\neq 0\)の解をもつならば、\(A=0\)としても同じことか。 今日はここで終わり~。
- チャート式 数学1 part4【方程式と不等式編】 砂田 利一 (Escrito por)数研出版 (Casa editorial de)20031 de abril de 2016 (Fecha de lanzamiento)Libro (Formato) 今日も解いていきます。問12からだ。ヒントによると\(x\)に関する2次方程式の解がすべて有理数となる条件は、判別式\(D\)が平方数であることだという。え~っと、2次方程式\(a{ x }^{ 2 }+bx+c=0\)の解は、解の公式を用いて次式で表される。 $$x=\frac { -b\pm \sqrt { { b }^{ 2 }-4ac } }{ 2a }=\frac { -b\pm \sqrt { D } }{ 2a }\tag{1} $$ 有理数とは分数\(\frac { m }{ n } \)(\(m\)、\(n\)は整数、\(n\neq 0\))の形で表される数であるという。たしかに、\(a\)、\(b\)、\(c\)が整数のとき、\(\sqrt { D } \)が有理数なら\(x\)は有理数になる。\(\sqrt { D } \)が無理数なら有理数\(+\)無理数で\(x\)は無理数だな。En cuanto a mí $${ m }^{ 2 }-28={ l }^{ 2 }$$ (\(l\)は\(0\)以上の整数)とおいて、\(m\)の範囲を\(2\sqrt { 7 } \le m\le 14\)と見つけてから、総当たりで探していった。sin embargo、回答を見るともっと簡単なやり方があったようだ。 $${ m }^{ 2 }-{ l }^{ 2 }=28$$ $$\left( m+l \right) \left( m-l \right) =28$$ として、\(m\)が自然数、\(l\)が\(0\)以上の整数であることと、\(m+l\)、\(m-l\)の差が偶数であり両者は奇数または偶数であることから、\(m+l=14\)、\(m-l=2\)と決まってしまうらしい。こっちのほうが分かりやすいな。 次は問13。A問題が終了ということで、ちょっと難しくなるのだろうか。まぁやっていこう。(1)は普通に計算すればいいな。(2)も $$ac+bd=1\tag{1}$$ $$ad-bc=0\tag{2}$$ これら2式に\(a\)、\(b\)、\(c\)、\(d\)をかけて足したり引いたりして変形すると答えが求まる。 そして問14。(1)は簡単。(2)は分からなくて迷った。ヒントには平方の差を作ると書いてあるが、う~ん?しばらく悩んだがやはり分からなかったので答えを見た。なんだ、そういうことだったのか。係数が実数の範囲で因数分解するとは下のようなことをすればよかったらしい。 $$\begin{eqnarray*}{ x }^{ 6 }+1&=&\left( { x }^{ 2 }+1…
- チャート式 数学1 part6【2次関数編】 砂田 利一 (Escrito por) 数研出版 (Casa editorial de) 20031 de abril de 2016 (Fecha de lanzamiento) Libro (Formato) 今日から2次関数の総合演習をやっていこう。 問18からだ。 (1)は普通に計算すればいい。 (2)は2次関数を\(x\)軸方向に\(q\)、\(y\)軸方向に\(-2\)だけ平行移動し、原点に対して対称移動せよという。 これは\(x\)を\(x-q\)、\(y\)を\(y+2\)とした後で、\(x\)を\(-x\)、\(y\)を\(-y\)とおけばOKだ。 次は問19。 条件から\(z\)を消去して\(x\)の2次式とみて平方完成する。 さらに得られた頂点を\(y\)の2次式とみて平方完成すれば最小値が求まるみたいだ。 そういうものか。 うまくできているんだな。 別解では下のように計算していた。 $$\begin{eqnarray*}{ x }^{ 2 }+4{ y }^{ 2 }+9{ z }^{ 2 }&=&{ \left( x-\frac { 1 }{ 3 } \right) }^{ 2 }+{ \left( 2y-\frac { 1 }{ 3 } \right) }^{ 2 }+{ \left( 3z-\frac { 1 }{ 3 } \right) }^{ 2 }\\ &+&2\cdot \frac { 1 }{ 3 } \left( x+2y+3z \right) -3{ \left( \frac { 1 }{ 3 } \right) }^{ 2 }\end{eqnarray*}$$ こうすると\(x+2y+3z=1\)を満たすようにうまいぐあいに平方完成される。 でもこれはなかなか思いつかないな~。 あとはインターネットで調べてみたら\(Y=2y\)、\(Z=3z\)とおいて、3次元の平面と原点を中心とする球の関係に帰着させて解いている人がいた。 このWebサイトに書かれていた。 平面と球が接するとき球の半径は最少になるので、あとは距離の公式とかベクトルを使って解けるみたい。 なるほどな~。 数学Bのベクトルに進んだ頃にまた考えてみるか。 そして問20。 これは\(a\)の範囲で場合分けして、最大値\(G\left( a \right)…