砂田 利一 (Escrito por)
数研出版 (Casa editorial de)
20031 de abril de 2016 (Fecha de lanzamiento)
Libro (Formato)
今日も2次関数のB問題を進めていこう。
問30からだ。
(1)は普通に場合分けをして絶対値を外せばいい。
(2)がこの問題のポイントとなるところだろう。
【1】\(x\ge a\)のとき、\(a\ge \frac { 1 }{ 2 } \)の場合と\(a<\frac { 1 }{ 2 } \)の場合で最小値\(m\left( a \right) \)が異なるので、場合分けする。
同様に【2】\(x<a\)のときは、\(a>-\frac { 1 }{ 2 } \)の場合と\(a\le -\frac { 1 }{ 2 } \)の場合で場合分けが必要だ。
そしたら\(a\ge \frac { 1 }{ 2 } \)、\(-\frac { 1 }{ 2 } <a<\frac { 1 }{ 2 } \)、\(a\le -\frac { 1 }{ 2 } \)の場合で【1】と【2】のそれぞれの差をとってどちらがより小さいかを明らかにし、関数\(f\left( x \right) \)の最小値\(m\left( a \right) \)を求めることになる。
僕はグラフを見てなんとなく直感で解いたが、それではダメだったんだな。
しっかり場合分けが必要みたいだ。
(3)は(2)がちゃんと解けていれば簡単だ。
次は問31。
Primero(1)。
今\(a\)、\(b\)、\(x\)、\(y\)全てが正の実数なので、以下の不等式
$$\frac { x }{ a } \le \frac { y }{ b } $$
の両辺に\(ab\)をかけたり、2乗したりしても、不等号の向きは変わらないし、通常は2乗することで生じる余計な解が含まれることもない。
あとは条件式を利用して\({ y }^{ 2 }\)を消去すればいい。
(2)は(1)から\(0\le x\le \frac { a }{ \sqrt { { a }^{ 3 }+{ b }^{ 3 } } } \)のとき、\(\min { \left\{ \frac { x }{ a } ,\frac { y }{ b } \right\} } =\frac { x }{ a } \)ser。
Además(1)と同様に\(0\le y\le \frac { b }{ \sqrt { { a }^{ 3 }+{ b }^{ 3 } } } \)のとき、\(\min { \left\{ \frac { x }{ a } ,\frac { y }{ b } \right\} } =\frac { y }{ b } \)となる。
これより最大値を求めればいいだろう。
そして問32。
これはおもしろい問題だった。
ヒントにあるように、条件(A)から、ある実数\(a\)に対して\(f\left( a \right) <0\)が成り立つとき、\(f\left( x \right)\)の最小値\(<0\)ser。
また条件(B)から、任意の整数\(n\)に対して\(f\left( n \right) \ge 0\)となるとき、最小値を与える\(x\)に最も近い整数\(x\)で\(f\left( x \right) \ge 0\)ser。
\(p\)、\(q\)が素数であることに注意して計算していくと以下の不等式が導かれる。
$${ p }^{ 2 }-1\le 4q< p^{ 2 }\tag{1}$$
(1)式から\(4q={ p }^{ 2 }-1\)と求められる。
したがって、
$$q=\frac { p-1 }{ 2 } \cdot \frac { p+1 }{ 2 } $$
となり、\(\frac { p-1 }{ 2 } \)、\(\frac { p+1 }{ 2 } \)は連続した2つの整数で、\(q\)は素数であるから、\(q=2\)、\(p=3\)となる。
なるほどな~。
総合演習Bはやっぱり少し難しくなっているみたい。
Artículos relacionados
- Tabla de matemáticas 1 part16 [forma y peso] 砂田 利一 (Escrito por)数研出版 (Casa editorial de)20031 de abril de 2016 (Fecha de lanzamiento)Libro (Formato) 今日で第3章「図形と計量」が終わりだ。つまりはこの問題集「チャート式 数学1」が終わりということになる。最後なのでがんばっていこう。 まずは問52。4辺の長さが分かっているが、角度が分からない凸四角形ABCDについて、\(\triangle \)ABDの面積を\(S\)、\(\triangle \)BCDの面積を\(T\)とする。(1)は\({ S }^{ 2 }+{ T }^{ 2 }\)のとりうる値の範囲を求めよという問題だ。ヒントにあるように\(\angle DAB=\alpha \)とおくと、余弦定理や面積の公式などから\({ S }^{ 2 }+{ T }^{ 2 }\)は\(\cos { \alpha } \)の2次式として表される。あとは\(\cos { \alpha } =t\)などとおいて、計算すればいい。 ただここで問題なのは\(\alpha \)の範囲である。条件としては四角形ABCDが凸四角形であるということだ。ヒントによると凸四角形とは内角が4つとも\(180°\)より小さい四角形だという。Qué quieres decir、四角形の4つの角について以下が成り立つ。 $$0°<\angle A,\angle B,\angle C,\angle D<180°$$ $$\angle A+\angle B+\angle C+\angle D=360°$$ また、余弦定理から以下の関係も求められる。 $$\cos { \angle C } =-1+\sqrt { 3 } \cos { \angle A } $$ $$\cos { \angle D } =-1+\sqrt { 3 } \cos { \angle B } $$ 他にも正弦定理からも方程式が求められる…となんとか\(\angle A=\alpha\)の範囲を計算しようと思ったが、あまりに面倒なのでやめた… 次に僕は三角形の成立条件を考えてみた。 $$\left| b-c \right| <a<b+c$$ という三角形の辺の関係式だ。しかしこれだと\(0°<\alpha <90°\)となってしまうのだ。正答は\(30°<\alpha <90°\)ser。やはり今回は凸四角形の条件ということで、三角形の成立条件ではうまくいかないみたいだ。三角形の成立条件だけだと、ブーメランみたいな形の四角形でもOKということになってしまうからな。 解答例によると実際に図示してみて考えるといいらしい。今回は\(\angle C\)および\(\angle D\)が\(180°\)となるときに、うまいこと四角形ABCDが直角三角形になる。これにより\(\alpha\)の範囲が求められるという。計算ではなかなか範囲を求めるのは難しいので、図を描いてみるというのが正解だったんだな~…(1)が分かれば(2)は簡単だ。 次は問53。正五角形についての問題だ。これはヒントにあるように、正五角形\(F\)と正五角形\(G\)が相似のとき、長さが\(k\)倍なら面積は\({ k }^{ 2 }\)倍であることを利用すればいいみたい。平面図形がなんであれ、相似なら面積は\({ k…
- チャート式 数学1 part15【図形と計量編】 砂田 利一 (Escrito por) 数研出版 (Casa editorial de) 20031 de abril de 2016 (Fecha de lanzamiento) Libro (Formato) 今日も解いていきます。 問48からだ。 ヒントにあるように\(\sin { \theta } =\tan { \theta } \cos { \theta } \)に気づくと、\(f\left( \theta \right) \)が積の形に変形できるので、これを利用する。 (1)は普通に解けばいい。 (2)は\(f\left( \theta \right)<0 \)なので、積の2つの項が\(0\)より大きいものと小さいものである場合である。 あとは\(0°<\theta <180°\)(ただし\(\theta \neq 90°\))のとき、\(\tan { \theta } <1\)となるのは\(0°<\theta <45°\)、\(90°<\theta <180°\)に注意して解くといい。 僕はうっかりミスしてしまった。 気をつけないといけないな。 次は問49。 これは $$\sin ^{ 2 }{ x } +\cos ^{ 2 }{ x } =1$$ $$\sin ^{ 2 }{ y } +\cos ^{ 2 }{ y } =1$$ という公式を使うと、変数が4つで式が4本になるので連立させていくと方程式が解ける。 僕は以下のような三角関数の合成の公式を使って解いた。 $$a\sin { \theta } +b\cos { \theta } =\sqrt { { a }^{ 2 }+{ b }^{ 2 } } \sin { \left( \theta +\alpha…
- チャート式 数学1 part9【2次関数編】 砂田 利一 (Escrito por)数研出版 (Casa editorial de)20031 de abril de 2016 (Fecha de lanzamiento)Libro (Formato) 今日も問題を解いていく。問27からだ。ヒントが解き方をよく表していた。(1)は\(f\left( x \right) -g\left( x \right) \)の最小値\(>0\)とする。(2)は\(f\left( x \right) -g\left( x \right) \)の最大値\(>0\)。(3)は\(f\left( x \right)\)の最小値\(>g\left( x \right)\)の最大値となる。(4)は\(f\left( x \right)\)の最大値\(>g\left( x \right)\)の最小値らしい。ヒントがなかったらよく分からなかったかもしれない。気をつけよう。 次は問28。これは点\(A\)と点\(B\)が異なることに注意して普通に計算すればいいだろう。簡単簡単。 そして問29。ここから、A問題が終わってB問題が始まるということで、少し難しくなるかもしれない。(1)は与えられた方程式から\(y\)を消去して、\(x\)と\(t\)の式と見る。そして\(x\)についての2次方程式が実数解を持つことから判別式\(D\ge 0\)となり、\(t\)のとりうる範囲が求まる。Ya veo、そういうものか。 あるいは図示してみてもいいかもしれない。\({ x }^{ 2 }+{ y }^{ 2 }=1\)は原点を中心とする半径\(1\)の円で、\(y=-x+t\)は傾き\(-1\)、\(y\)切片を\(t\)とする直線だ。これらが交点を持つ範囲を考えれば直線が円に接しているときがギリギリなので、そのときの\(t\)の値を図形と角度の関係から求めてもいいな。 (2)は\(S\)を\(t\)で表したら、(1)で求めた範囲内での最大値、最小値を求めればいい。 今日はこれで終わり~。