Pibirog

Una variedad de diarios

チャート式 数学1 part2【方程式と不等式編】

Matemáticas tabla 1  

砂田 利一 (Escrito por)
数研出版 (Casa editorial de)
20031 de abril de 2016 (Fecha de lanzamiento)
Libro (Formato)

今日も進めていきます
今回は問4からだ
式を因数分解せよということで(1)(10)まで式が10題並んでいる
面倒だが計算するか
(6)、(9)では以下の公式を使った

$${ \left( a+b \right) }^{ 3 }={ a }^{ 3 }+3{ a }^{ 2 }b+3a{ b }^{ 2 }+{ b }^{ 3 }$$
$${ \left( a-b \right) }^{ 3 }={ a }^{ 3 }-3{ a }^{ 2 }b+3a{ b }^{ 2 }-{ b }^{ 3 }$$
$${ a }^{ 3 }+{ b }^{ 3 }=\left( a+b \right) \left( { a }^{ 2 }-ab+{ b }^{ 2 } \right) $$
$${ a }^{ 3 }-{ b }^{ 3 }=\left( a-b \right) \left( { a }^{ 2 }+ab+{ b }^{ 2 } \right) $$

これでがんばって解いた

次は問5
これは分母を有理化したりすればOKだな
かんたんかんたん

そして問6
ルートは常に正の値となることに注意して計算すればいい
これもかんたん

最後に問7
(1)\(d\left( \sqrt { 17 } \right) =\sqrt { 17 } -4\)として計算すれば大丈夫
(2)はちょっと分かりにくかった
\(0\le d\left( A \right) <1\)なのでAを足して\(A\le A+d\left( A \right) <A+1\)となる
\(A+d\left( A \right) =\frac { 14 }{ 3 } \)を代入して変形すると\(3\frac { 2 }{ 3 } <A\le 4\frac { 2 }{ 3 } \)となる
Qué quieres decir\(A\)の整数部分は\(3\)\(4\)ser。
\(d\left( A \right) =A-3\)\(d\left( A \right) =A-4\)ということになる
あとは計算すればOKだな
僕は注意力散漫で間違えてしまった
あらららら

よしまた次回問8から解いていこう

Relacionado Youtube

  • 高校数学 赤チャート解説   不等式の整数解と定数の範囲
    YouTube Video
    高校数学 赤チャート解説 不等式の整数解と定数の範囲
  • 高校数学Ⅰ 絶対値を含む方程式・不等式① 場合分けは次回以降で
    YouTube Video
    高校数学Ⅰ 絶対値を含む方程式・不等式① 場合分けは次回以降で
  • 数学I  2次不等式の応用②  文字係数の不等式
    YouTube Video
    数学I 2次不等式の応用② 文字係数の不等式
  • 絶対値を含む方程式・不等式 超基本②
    YouTube Video
    絶対値を含む方程式・不等式 超基本②

Deja una respuesta

Su dirección de correo electrónico no se publicará。
Los comentarios pueden tardar algún tiempo en ser aprobados。