砂田 利一 (Escrito por)
数研出版 (Casa editorial de)
20031 de abril de 2016 (Fecha de lanzamiento)
Libro (Formato)
よし、今日からこの問題集を始めていくぞ~。
まずは第1章「方程式と不等式」からだ。
第1問、同志社女子大の問題だという。
これはただ式を展開すればいいだけだ。
計算が面倒だけどな。
\({ x }^{ 5 }\)の係数は\(-19\)、\({ x }^{ 3 }\)の係数は\(-23\)だろう。
ほい、正解~。
Según el comentario de、全部を展開しなくてもその次数の項にだけ注目すればいいみたい、Ya veo。
次は第2問。
同志社大の問題だ。
(1)は条件式から
$$xyz=3\left( xy+yz+xz \right)\tag{1} $$
となり、あとは普通に与えられた式を展開して(1)式を代入すれば、都合よく\(\left( xy+yz+xz \right)\)の項が消えて答えが出る。
(2)はヒントによれば、
$${ x }^{ 3 }+{ y }^{ 3 }+{ z }^{ 3 }-3xyz=\left( x+y+z \right) \left( { x }^{ 2 }+{ y }^{ 2 }+{ z }^{ 2 }-xy-yz-zx \right) $$
という公式を利用するみたい。
この式を変形すると、
$${ x }^{ 3 }+{ y }^{ 3 }+{ z }^{ 3 }={ \left( x+y+z \right) }^{ 3 }-3\left( x+y+z \right) \left( xy+yz+zx \right) +3xyz $$
このようになって、El resto(1)と同様に式を代入すれば\({ x }^{ 3 }+{ y }^{ 3 }+{ z }^{ 3 }\)が求まる。
最後は問3。
(1)が県立広島女子大、(2)が旭川大の問題だという。
これもヒントを見る。
すると、\({ x }^{ n }+\frac { 1 }{ { x }^{ n } } \)(\(n\)は自然数)は\({ x }+\frac { 1 }{ { x } } \)で表されるという。
(1)は
$${ x }^{ 2 }+5x+1=0\tag{1} $$
Pero、\(x=0 \)のときこの式は成り立たないので\(x\neq 0 \)ser。
Por lo tanto、(1)式を\(x \)で割ることができる。
あとはヒントどおり変形して計算すればいい。
(2)は\(1<x<2 \)という条件に注意して、与えられた式から\(\left( x+\frac { 1 }{ x } \right) \)と\(\left( x-\frac { 1 }{ x } \right) \)を求める。
Y(エ)~(カ)式を変形して計算すればいいな。
今日はここまで。
今回は簡単だった。
Artículos relacionados
- チャート式 数学1 part9【2次関数編】 砂田 利一 (Escrito por)数研出版 (Casa editorial de)20031 de abril de 2016 (Fecha de lanzamiento)Libro (Formato) 今日も問題を解いていく。問27からだ。ヒントが解き方をよく表していた。(1)は\(f\left( x \right) -g\left( x \right) \)の最小値\(>0\)とする。(2)は\(f\left( x \right) -g\left( x \right) \)の最大値\(>0\)。(3)は\(f\left( x \right)\)の最小値\(>g\left( x \right)\)の最大値となる。(4)は\(f\left( x \right)\)の最大値\(>g\left( x \right)\)の最小値らしい。ヒントがなかったらよく分からなかったかもしれない。気をつけよう。 次は問28。これは点\(A\)と点\(B\)が異なることに注意して普通に計算すればいいだろう。簡単簡単。 そして問29。ここから、A問題が終わってB問題が始まるということで、少し難しくなるかもしれない。(1)は与えられた方程式から\(y\)を消去して、\(x\)と\(t\)の式と見る。そして\(x\)についての2次方程式が実数解を持つことから判別式\(D\ge 0\)となり、\(t\)のとりうる範囲が求まる。Ya veo、そういうものか。 あるいは図示してみてもいいかもしれない。\({ x }^{ 2 }+{ y }^{ 2 }=1\)は原点を中心とする半径\(1\)の円で、\(y=-x+t\)は傾き\(-1\)、\(y\)切片を\(t\)とする直線だ。これらが交点を持つ範囲を考えれば直線が円に接しているときがギリギリなので、そのときの\(t\)の値を図形と角度の関係から求めてもいいな。 (2)は\(S\)を\(t\)で表したら、(1)で求めた範囲内での最大値、最小値を求めればいい。 今日はこれで終わり~。
- チャート式 数学1 part12【2次関数編】 砂田 利一 (Escrito por) 数研出版 (Casa editorial de) 20031 de abril de 2016 (Fecha de lanzamiento) Libro (Formato) 今日で2次関数編がラストだ。 問36からやっていこう。 ヒントにあるように以下のようにする。 $$\begin{eqnarray*}f\left( x \right) &=&{ x }^{ 2 }-ax+b-\left( -{ x }^{ 2 }-bx+a \right) \\ &=&2{ x }^{ 2 }-\left( a-b \right) x-\left( a-b \right) \end{eqnarray*}$$ そして\(a-b=t\left( t\neq 0 \right) \)などとおいて、\(f\left( x \right) \)について\(f\left( x \right) <0\)を満たす実数\(x\)が必ず存在するので、2次関数の頂点の\(y\)座標は\(0\)より小さい。 よって\(T>0\)、\(T<-8\)となる。 あとはヒントにあるように放物線\(y=f\left( x \right) \)の軸は直線\(x=\frac { T }{ 4 } \)なのでこの軸に最も近い整数を考えればいい。 僕はここから悩んでしまって、次のようにした。 \(\frac { T }{ 4 } \)に最も近い整数は、 $$t=4k\left(kは0,-1,-2を除く整数 \right)のときはn=k$$ $$4k<t\le 4k+2\left(kは-1,-2を除く整数 \right)のときはn=k$$ $$4k+2<T< 4\left( k+1 \right) \left(kは-1,-2を除く整数 \right)のときはn=k+1$$ そして\(x=n\)を\(f\left( x \right)\)に代入すると\(f\left( x \right)\)は\(t\)の1次式と見ることができる。 あとは考えている\(t\)の範囲において、これまた\(k\)の範囲についても考慮しながら最大値の議論をしていくと、\(f\left( n \right) \le -2\)または\(f\left( n \right) < 0\)と分かり、題意を満たす整数\(n\)が必ず存在すると分かった。 解くのにかなり時間がかかってしまった… 実際の試験だったら時間がかかりすぎてしまって、僕は明らかにこの問題を解けていないだろう。 sin embargo、正答例ではもっと簡単に解いていた。 $$T<-8のときf\left( -2 \right) =8+t<0$$…
- チャート式 数学1 part5【方程式と不等式編】 砂田 利一 (Escrito por) 数研出版 (Casa editorial de) 20031 de abril de 2016 (Fecha de lanzamiento) Libro (Formato) 今日も進めていくぞ~。 問15からだ。 (1)は解の公式を利用して解を求め、誘導にしたがって因数分解すればいい。 (2)は\(P\left( x,y \right) =0\)を、\(x\)についての2次方程式と考えて解の公式で解く。 そして\(x=f\left( y \right) \)、\(x=g\left( y \right) \)とすると、\(P\left( x,y \right) =\left\{ x-f\left( y \right) \right\} \left\{ x-g\left( y \right) \right\} \)と因数分解できる。 今、\(P\left( x,y \right)\)が\(x\)、\(y\)についての1次式の積として表されるので、解の公式で求められた解の\(\sqrt { } \)内の\(y\)についての2次式が、\(y\)の1次式の平方数(2乗)の形にならないといけない。 このとき\(y\)についての2次式は重解をもち、判別式\(D=0\)ser。 これから\(k\)が求まる。 最初は\(P\left( x,y \right) =0\)を\(x\)についての2次式とみて解を求め、次は出てきた解の\(y\)についての2次式に注目して判別式を利用するというおもしろい問題だった。 あと気になったのは $$x=\frac { -\left( 4+y \right) \pm \sqrt { { \left( 3y+2 \right) }^{ 2 } } }{ 2 } ,\frac { -\left( 4+y \right) \pm \sqrt { { \left( 3y-2 \right) }^{ 2 } } }{ 2 } $$ となったときの根号(\(\sqrt { } \))部分の計算についてだ。 通常は絶対値を付けて\(\left| 3y+2 \right| \)、\(\left| 3y-2 \right| \)とする。…