Don't watch TV.
Yago苫米地 英人 (Written by)
PHP Research Institute (Publishing House) / PHP新書
2009September 16, 2016 (Release date)
New book (Format)
I read the famous author's book for the first time.。
It has an exciting title.、Interesting。
There's a back to things、We're brainwashed, are we?。
It's a strange world.。
Note Notes。
Keyhole TV、P2P、Boom、Comfort Zone、Enslave、差別…
多角的な視点を持って、何事も一歩立ち止まって吟味してみないといけないな。
僕なんかはすぐ流されるから、気をつけないといけない。
Related Posts
- Chart math 1 part16 [shape and weighing] Toshikazu Sunada (Written by)Zuken Publishing Co., Ltd. (Publishing House)2003April 1, 2016 (Release date)Hardcover (Format) 今日で第3章「図形と計量」が終わりだ。つまりはこの問題集「チャート式 数学1」が終わりということになる。最後なのでがんばっていこう。 まずは問52。4辺の長さが分かっているが、角度が分からない凸四角形ABCDについて、\(\triangle \)ABDの面積を\(S\)、\(\triangle \)BCDの面積を\(T\)とする。(1)は\({ S }^{ 2 }+{ T }^{ 2 }\)のとりうる値の範囲を求めよという問題だ。ヒントにあるように\(\angle DAB=\alpha \)とおくと、余弦定理や面積の公式などから\({ S }^{ 2 }+{ T }^{ 2 }\)は\(\cos { \alpha } \)の2次式として表される。あとは\(\cos { \alpha } =t\)And so on and so on、計算すればいい。 ただここで問題なのは\(\alpha \)の範囲である。条件としては四角形ABCDが凸四角形であるということだ。ヒントによると凸四角形とは内角が4つとも\(180°\)より小さい四角形だという。What you mean、四角形の4つの角について以下が成り立つ。 $$0°<\angle A,\angle B,\angle C,\angle D<180°$$ $$\angle A+\angle B+\angle C+\angle D=360°$$ また、余弦定理から以下の関係も求められる。 $$\cos { \angle C } =-1+\sqrt { 3 } \cos { \angle A } $$ $$\cos { \angle D } =-1+\sqrt { 3 } \cos { \angle B } $$ 他にも正弦定理からも方程式が求められる…となんとか\(\angle A=\alpha\)の範囲を計算しようと思ったが、あまりに面倒なのでやめた… 次に僕は三角形の成立条件を考えてみた。 $$\left| b-c \right| <a<b+c$$ という三角形の辺の関係式だ。しかしこれだと\(0°<\alpha <90°\)となってしまうのだ。正答は\(30°<\alpha <90°\)They are。やはり今回は凸四角形の条件ということで、三角形の成立条件ではうまくいかないみたいだ。三角形の成立条件だけだと、ブーメランみたいな形の四角形でもOKということになってしまうからな。 解答例によると実際に図示してみて考えるといいらしい。今回は\(\angle C\)および\(\angle D\)が\(180°\)となるときに、うまいこと四角形ABCDが直角三角形になる。これにより\(\alpha\)の範囲が求められるという。計算ではなかなか範囲を求めるのは難しいので、図を描いてみるというのが正解だったんだな~…(1)が分かれば(2)は簡単だ。 次は問53。正五角形についての問題だ。これはヒントにあるように、正五角形\(F\)と正五角形\(G\)が相似のとき、長さが\(k\)倍なら面積は\({ k }^{ 2 }\)倍であることを利用すればいいみたい。平面図形がなんであれ、相似なら面積は\({ k…
- All of the reading and writing disability (dyslexia)-nice head、Read the book Sally shavitz (Written by) / Fujita Akio. (Translation) PHP Research Institute (Publishing House) 2006In April, (Release date) Hardcover (Format) A book about reading and writing disability (dyslexia)。 Some studies show that in the United States in five dyslexia is one。 Or anomalies possible causes of dyslexia and neural networks、How to overcome had been written in the book。 Normal、Seems to be using the occipital temporal neural pathways to read people's、Said Dyslexic people use frontal。 And examples of nervous system was developed by the treatment that looks like。 However,、English-speaking countries for the book was written so、Both Hiragana and kanji in Japan is to accept that I can't。 Of course、ためになることはたくさん書かれていたが… 教科書の録音図書や視覚障害者用読み上げソフト、As well as the use of computer、Effective for dyslexic people like.。 Recently, such as Amazon's Audible (audible) and FeBe (Phoebe)、So read the book, audio book、Might be useful。 Also what、Was written with primary goal to keep the child's self esteem is important。 Despite dyslexia、University professor who also like it in the United States。 It's great to。 Because I did not know about this disorder often、In the study.。
- Chart math 1 part3 [equations and inequalities chapter] Toshikazu Sunada (Written by) Zuken Publishing Co., Ltd. (Publishing House) 2003April 1, 2016 (Release date) Hardcover (Format) 今日も問題を解いていこう。 問8からだ。 (1)では与えられた方程式が\(x=0\)のときには成り立たないので、\(x\neq 0\)と分かる。 よってこの方程式を\({ x }^{ 2 }\)で割ることができる。 あとは普通に解けばいいな。 (2)は実数解を求めよとのこと。 判別式\(D\)が\(D\ge 0\)のとき2次方程式は実数解を持つ。 これに注意して計算すればOKだ。 そして問9。 Aのポンプから注がれる水の量を\(x\)(L/h)、Bのポンプから注がれる水の量を\(y\)(L/h)、貯水池の水の総量を\(z\)(L)などとおく。 このとき、\(x,y>0\)They are。 あとは方程式を2つ立てて\(z\)を消去し、\(x\)を\(y\)で表す。 求める時間は\(\frac { z }{ y } \)で表されて、これに代入すれば終わりだな。 しかし僕は途中で計算ミスをして間違えてしまった。 気をつけないといけない。 次は問10。 ヒントによるとこの条件式は比例式というもので、比例式\(=k\)And so on and so on、\(x\)、\(y\)、\(z\)についての連立方程式とみて、\(x\)、\(y\)、\(z\)を\(k\)で表せばいいらしい。 あとは代入して計算すればいい。 僕はヒントを見落としていたので、\(k\)とはおかずに\(y\)、\(z\)を\(x\)で表して解いた。 まぁそれでもいいだろうけど、比例式は\(k\)とおくのが鉄則みたいだな。 最後に問11。 \(Ax=0\)が\(x=0\)でない解を持つなら、\(A\)は正則行列でないということを大学の線形代数の講義で学んだ気がする… つまり\(A\)は逆行列を持たないということだ。 $$\begin{pmatrix} 1-k & 2 \\ 3 & 2-k \end{pmatrix}\left( \begin{matrix} x \\ y \end{matrix} \right) =\left( \begin{matrix} 0 \\ 0 \end{matrix} \right) $$ 上の式で\(A=\begin{pmatrix} 1-k & 2 \\ 3 & 2-k \end{pmatrix}\)として、逆行列を持たないとき\(\Delta =\left( 1-k \right) \left( 2-k \right) -6=0\)be。 これで\(k\)が求まる。 As in the hint、行列を使わないで普通に\(y\)を消去して\(Ax=0\)として、\(x\neq 0\)の解をもつならば、\(A=0\)としても同じことか。 Today is the end of here!。
Arts of intellectual production for the OWL
Terrorism and Literature 9.11 After America and the World
Related Youtube
-
【テレビは見てはいけない】変人扱いされた皆さんへ〈春はやってきます〉
-
勝間和代の、テレビのニュースを一切見てはいけない理由を教えます
-
テレビのニュースを見てはいけない3つの理由
-
【漫画】テレビのニュースを一切見てはいけない理由【マンガ動画】