Ichiro Takeuchi (Written by)
Shinchosha (Publishing House) / Shincho Shinsho
2013July 13 - (Release date)
New book (Format)
It is the second book after the million-selling book "People look like 90%".。
Written about the importance of nonverbal communication。
I haven't read the book that was released before.、I read this book this time。
Then、There was a lot written about it that could be useful。
I see, I thought、Sending and receiving communications、About Aura、About posture、Blink、voice、It's about the sense of distance, etc.。
I've lived my life without being very conscious of how I look.、I felt that I should be careful from now on。
意識するのとしないのとでは相手に与える印象がかなり変わってくる気がする…
こういうことを教えてくれる人は周りにいなかったなぁ。
I read this book by chance.、It was very informative。
After all、I think it's important to have confidence。
This is fundamental to everything~
Related Posts
- Juvenile delinquents who can't cut cake Koji Miyaguchi Shinchosha / Shincho Shinsho July 13, 2019 (Release date) New book (Form of issuance) Books written by the author, a child psychiatrist, about juvenile delinquents。 More than a dozen percent of the population is said to have introduced practical training focusing on people with borderline intelligence。 It was a shocking book。 I don't know if the disability of the boys who committed the crime is congenital or acquired, but I thought education was important.。 The juvenile medical center is the last bastion.。 Beware of junior high schools。 Is it a middle 1 gap?。 I once saw a bad boy in Shimokitazawa.。 Although the first feeling of being scared、When I talked to him, he might have been a normal child.。 I think it would be good for boys with developmental or intellectual disabilities to read manga such as Doraemon.。 Isn't it a training for cognitive functions?。 Knowledge is power。
- Idiot's Wall Mengji Yoro (Written by) Shinchosha (Publishing House) / Shincho Shinsho April 10, 2003 (Release date) New book (Format) 2003A best-selling book of the year。 I've read it by now, so I'll summarize what I found useful somehow.。 People who voluntarily block information about things they don't want to know Knowledge and common sense are different The human brain is all about computers Different people have different outputs to input。 People change, you should learn about commonality rather than individuality Modern people forget the body It was a smooth and easy-to-read book。 Modern individuals define themselves as information.。 Myself changing day by day、Same thing、Thinking that it is the same information。 That's why it seems to assert individuality.。 All things are in flux... It seems that。 I get bored quite easily.、If you think that you are changing by doing something new、Maybe it's normal for humans。 I've had the experience of suddenly wanting to delete SNS.、It's not strange either.。 Breaking with your information-oriented past self、Do you erase it because you want to change into a new you? It's possible to be stuck in the past self。 I have to try new things and change.。
- Chart Formula Mathematics A Part4 [Number of Cases] Takaaki Yanagawa (Written by) Zuken Publishing Co., Ltd. (Publishing House) 2003April 1, 2016 (Release date) Hardcover (Format) today also solve the problem of the number of cases。 First of all, question 15。 I solved it as follows。 At first、If it rotates and overlaps, it is also a different shape.、How to paint everything is ({ 2 }^{ 9 }=512\)通りある。 また回転しても形が変わらない塗り分け方を数えると8通りある。 In addition、回転したら形が2つになる塗り分け方は12通りある。 残りは回転したら形が4つになる塗り分け方である。 よってその塗り分け方は、 $$\frac { 512-\left( 8+2\times 12 \right) }{ 4 } =120$$ 通りである。 これらから、求める答えは $$8+12+120=140$$ 通りだ。 しかしこのやり方だと、回転したとき形が2つになる塗り分け方を数えるのが分かりにくい。 数えもれが出てしまう可能性が大だ。 解答例では9マスを中央の正方形と周りの4つの長方形に分けて計算していた。 長方形の塗り方は4通りで、この中から周りの4つの長方形がの塗り分け方が 1種類のとき 2種類のとき 3種類のとき 4種類のとき を場合分けして考えればいいという。 そういうものか~ 次は問16。 (1)、(2)は\(a=6\)なので南北方向の敷き詰め方は決まる。 あとは東西方向の長さに着目すればいい。 (3)はヒントによると、まず辺ABに沿った部分から敷くと4通りが考えられる。 And、それらの場合の残り部分の敷き詰め方を考えればいい。 (1)、(2)のやり方も使って解いていくことになるが、僕は計算間違いをしてしまった。 なかなかミスが多くて困ったものだ。 その次は問17。 展開式の一般項は二項定理を用いて次式で表される。 $${ _{ m }{ C }_{ j } }{ \cdot _{ n }{ C }_{ k }{ x }^{ 2j+3k } }$$ あとは\({ x }^{ 6 }\)について\(2j+3k=6\)を満たす\(0\)以上の整数\(\left( j,k \right) \)を考えればいい。 そうしたら\(m\)の範囲を求めて、それぞれの\(m\)について\(n\)が存在するかを考える。 これで(1)が解けた。 (1)が分かれば(2)は簡単に解ける。 最後に問18。 (1)は背理法を使うなりして簡単に解ける。 まぁ背理法を使わなくても解けるみたいだけどな。 (2)はヒントによると以下のようにするのがポイントみたいだ。 $$\left( { 2 }^{ p-1 }-1 \right) \times…