Chart Formula Mathematics A
YagoTakaaki Yanagawa (Written by)
Zuken Publishing Co., Ltd. (Publishing House)
2003April 1, 2016 (Release date)
Hardcover (Format)
Now that chart math 1 is over, I'm going to do Math A this time.。
This red chart was revised in 2013 and 2017、It seems that a new course version is now on sale.。
This book I bought is a version released in 2003, so it's a little old.。
Oh, no, no, no, no, no、It will contain the same problem, so let's solve it without worrying about it.。
The scope of this book is as follows。
- Chapter 1 Number of Cases
- Chapter 2 Probability
- Chapter 3 Logic and Set
- Chapter 4 Plane Shapes
I'm going to solve only the problem of the general exercise.。
Mathematics of university entrance exam questionsThe T:SystemChart-mathematics ALet's do it with the tag。
Related Posts
- English that Japanese people always make mistakes James M. Badaman (Written by) KADOKAWA / Naka-Sutra Publishing (Publishing House) / 中経の文庫 2015年2月20日 (Release date) Kindle version (Format) a book in which a native author teaches japanese people an easy-to-make English expression。 The author seems to be a professor at a Japanese university.、I seem to have written this book from my experience teaching English to university students.。 The contents of this book are as follows。 第1章 自分について説明する表現 第2章 学校で使う表現 第3章 家庭で使う表現 第4章 ビジネスで使う表現 第5章 友達に使う表現 第6章 趣味・旅について使う表現 第7章 パーティーで使う表現 第8章 街で使う表現 8章にわたり、A total of 100 topics are covered.。 Because there is not so much sentence quantity、You can read it smoothly.。 In the study.。 But、There was a part of me that bothered me a little bit.。 Still, I was told this for a moment、"What is it?" I felt that。 (第4章 第39問) 学生の英語に気分を害した著者の気持ちが書かれている。 There's absolutely nothing else to do.。」、"It doesn't make sense at all.。」、"Please change your mind.。Or something like that.。 Especially in Chapter 4, harsh words were seen against the Japanese.。 When you say it like this、I can't communicate in English for fear of mistakes.。 it also reduces the reader's willing mind.。 If、This may be the attitude of the profession of a university professor.。 Even japanese university professors、There are people who take this attitude toward students.。 From their point of life, students still don't know what children are.、Maybe they feel sick of each year dever dever dinging students who make similar mistakes.。 However, the reader of this book is not limited to the university student.。 With a wide range of readers in consideration、I thought it would be better to teach a little more gently.。 少し揚げ足とりみたいな感想かなw まぁ勉強になったから、I'm glad I read it.。
- Chart Type Mathematics A part2 [Several In Case] Takaaki Yanagawa (Written by)Zuken Publishing Co., Ltd. (Publishing House)2003April 1, 2016 (Release date)Hardcover (Format) 今日も場合の数の問題を解いていくぞ~問6からだ。Oh well、It's a matter of combinations and circular permuting.。Different(n\)個のものの円順列の総数は\(\left( n-1 \right) !\)represented by。You can use this to solve it.。 And question 7。I made a mistake in this problem.。(1)、(2)Both、simply right four、I calculated it as a permutable to sort the top four.。By the way、Permutables that contain the same are represented by the following formula:。\(n\)Out of 10、同じものがそれぞれ\(p\)Pieces、\(q\)Pieces、\(r\)When there is one、これらを\(n\)What is the total number of permutables to be arranged?、 $${ _{ n }{ C }_{ P }\times }{ _{ n-p }{ C }_{ q }\times }{ _{ n-p-q }{ C }_{ r }=\frac { n! }{ P!q!r! } }\quad \left( p+q+r=n \right) $$ But、Now we're going to find a rectangular path.。This route is in the shape of a triangle.。 According to the answer example(1)3 squares sideways as a temporary road、Think of a three-square-length rectangular path。And、Point C、D、E、They set an F。And then、The path from point C to point D is right 3.、Because it is a permuting of the top three、it's officially required earlier。The rest is an extra route.、(Route through point E)\(+\)(Route through point F)\(-\)(Path through points E and F together)seeking as、It's good to pull.。Hmm.、I see. (2)It's hard to do it all the time.。Point P according to the answer example、Q、R、Establish S。and divided in the following four cases。 Pを通る経路 Qを通り、Pを通る経路 Rを通り、Qを通らない経路 Sを通り、Rを通らない経路 このようにすると、They are so、It's like it counts without duplication.。I didn't know this.。If the problem of such a route is focused on which point to pass, should it be parted?。 Next is Question 8.。6It's a matter of how to get on a boat that can take up to four people.。When distinguishing people、If you don't and you want to distinguish a boat、ask for four combinations if you don't。(1)if you don't distinguish between people and boats.、Only the number of people who share as hinted at is a problem.。(4)The (3)\(\div 2!\)It's like it's to。I solved it by the case、The answer became the same.。Well, I guess that's the way it is.。 Next is Question 9.。(1)is a matter of simple combinations。But、As for me(2)、(3)I made this wrong again.。"Is it a duplicate combination problem?" I thought, "I'm not going to do that."、It was a duplicate permuting problem.。ちなみに重複組合せで\(n\)個の異なるものから重複を許して\(r\)個をとる組合せの数は\({ _{ n+r-1 }{ C }_{ r } }\)represented by。\(n-1\)個の仕切りと\(r\)it's the number of permutings of 0 pieces.。Duplicate permuting, on the other hand,、Different(n\)個のものから重複を許して\(r\)In permuting to take out the pieces、\({ n }^{ r }\)required in。(2)It's easy to use.、(3)even if you're not(2)If you pull from, you will be asked。分からなかったな~ 最後に問10。It's a binary theorem problem.。二項定理とは\({ \left( a+b \right) }^{ n }\)の展開式の一般項(第r+1番目の項)が\({ _{ n }{ C }_{ r } }{ a }^{ n-r }{ B }^{ r }\)is to be written with。(1)You can use this to solve it.。(2)According to the hint, it seems to be good as follows。\({ x }^{ k }\)の係数を\({ a }_{ k }\)They go to。そして\(\frac…
- Do not be fooled into betraying the intuitive mathematical "prejudice" mathematical thinking method 神永 正博 (Written by)Kodansha (Publishing House) / ブルーバックス2014年11月21日 (Release date)New book (Format) 直感では間違えてしまうような数学の題材がいろいろ取り上げられている本。僕の知らないことがたくさん載っていて、Interesting。数学の本はあまり読んだことがなかったからな。本書の内容は下のようなものだ。 第1章 直感を裏切るデータ 第2章 直感を裏切る確率 第3章 直感を裏切る図形 第4章 直感を裏切る論理 感覚的には章が進むにつれ、ちょっと難しくなっていったような気がしたが、僕は全体的になんとなくフィーリングで読み進んだ。 「シンプソンのパラドックス」、「ベイズの定理」、「コーシー分布」、「モンテカルロ法」、「ルーローの多角形」などなど他にもたくさん様々なテーマが載っていた。僕が特におもしろかったのは、「ベンフォードの法則」、「バースデーパラドックス」、「ポアソン分布」、「アークサイン法則」、「四色問題」、「連続体仮設」とかかな。 ベンフォードの法則とは、いろいろなデータの数字は先頭桁の数字が1であるものが非常に多く、2、3、…9と数字が大きくなるにしたがって頻度が下がるというものらしい。不思議だな。「一般化されたベンフォードの法則」は次式で表されるとか。 $$y=\frac { 1 }{ { x }^{ \alpha } }\tag{1}$$ And(1)式で、\(\alpha =1\)のときが、「オリジナルのベンフォードの法則」だという。 ポアソン分布とは、互いに無関係な事象が固まって起きやすく、またしばらく起きないこともあるという分布らしい。いろんな事故や天災にも当てはまるとか。これも不思議だ。 The rest、数学には本質的に証明があまりに長く、人間には全体を理解できない証明も存在するということも書かれていた。And、否定も肯定も証明不可能な命題も存在するらしい。However,、数学者は前へ進み続けるという。第4章の最後に書かれていた文章が印象的だった。 それでもなお、数学者が歩みを止めることはないでしょう。連続体仮設が示した、「否定も肯定も不可能な命題がある」という事実。This is、世紀の大難問に正面から立ち向かった、勇気と努力の結晶なのです。(p.237)