Toshikazu Sunada (Written by)
Zuken Publishing Co., Ltd. (Publishing House)
2003April 1, 2016 (Release date)
Hardcover (Format)
なんとなく数学の大学受験問題を解きたくなったので、チャート式の問題集を買った。
本にのっている問題を解いていくことにする。
総合演習を解けばいいかな。
分野はいろいろあるが、数1がいちばん簡単そうなので、まずこの本から始めていきます。
Mathematics of university entrance exam questionsThe T:SystemChart math 1Let's do it with the tag。
But、著作権の関係で問題をのせられないみたい。
つまらんな~
Related Posts
- Chart Formula Mathematics 1 part7 [Secondary Function] Toshikazu Sunada (Written by) Zuken Publishing Co., Ltd. (Publishing House) 2003April 1, 2016 (Release date) Hardcover (Format) 今日も2次関数の総合演習を解いていこう。 問21からだ。 これは2つの絶対値に気をつけて場合分けして\(g\left( x \right) \)をグラフに図示する。 そして\(0<C<1\)のとき\(g\left( x \right) =c\)を満たす\(x\)を求めればいい。 次は問22。 (1)は2本の方程式を連立させて、\(x\)の2次方程式が判別式\(D=0\)となるとき、\({ C }_{ 1 }\)、\({ C }_{ 2 }\)がただ1つの共有点をもつ。 (2)も点\(P\)を通る直線が\({ C }_{ 1 }\)、\({ C }_{ 2 }\)と接するので、連立させて判別式\(D=0\)から求めればいい。 そして問23。 (1)、(2)は普通に解けばいいだろう。 (3)は解の公式から求められた2解の差が\(2\)であればいい。 \(D>0\)に気をつけて計算すれば\(p\)、\(q\)が求められて頂点の座標が求まる。 今日はこれで終わり~。
- Chart Formula Mathematics 1 Part8 [Secondary Function Edition] Toshikazu Sunada (Written by) Zuken Publishing Co., Ltd. (Publishing House) 2003April 1, 2016 (Release date) Hardcover (Format) 今日も進めていこう。 まずは問24。 これは①式と②式の判別式\(D\ge 0\)から\(a\)の範囲を求めて計算すればいい。 簡単だ。 次は問25。 これは場合分けして絶対値を外してから、解の公式や因数分解を使って不等式を解けばいい。 (3)は絶対値のついている式が2つあるので面倒だが、地道に場合分けをして計算すれば解ける。 僕はうっかり計算ミスで(1)I made a mistake。 You have to be careful.。 そして問26。 まずは\(a\)の範囲で場合分けして2次不等式を解く。 そして条件である、整数\(x\)がただ1つ存在することを満たすような\(a\)の範囲を探せばいい。 これも簡単だ。 今日は1時間もかからず終わったな。 また次回進めていこう。
- Chart Formula Mathematics 1 Part 5 [Equations and Inequalities] Toshikazu Sunada (Written by) Zuken Publishing Co., Ltd. (Publishing House) 2003April 1, 2016 (Release date) Hardcover (Format) 今日も進めていくぞ~。 問15からだ。 (1)は解の公式を利用して解を求め、誘導にしたがって因数分解すればいい。 (2)は\(P\left( x,y \right) =0\)を、\(x\)についての2次方程式と考えて解の公式で解く。 そして\(x=f\left( y \right) \)、\(x=g\left( y \right) \)とすると、\(P\left( x,y \right) =\left\{ x-f\left( y \right) \right\} \left\{ x-g\left( y \right) \right\} \)と因数分解できる。 Now、\(P\left( x,y \right)\)が\(x\)、\(y\)についての1次式の積として表されるので、解の公式で求められた解の\(\sqrt { } \)内の\(y\)についての2次式が、\(y\)の1次式の平方数(2乗)の形にならないといけない。 このとき\(y\)についての2次式は重解をもち、判別式\(D=0\)They are。 これから\(k\)が求まる。 最初は\(P\left( x,y \right) =0\)を\(x\)についての2次式とみて解を求め、次は出てきた解の\(y\)についての2次式に注目して判別式を利用するというおもしろい問題だった。 あと気になったのは $$x=\frac { -\left( 4+y \right) \pm \sqrt { { \left( 3y+2 \right) }^{ 2 } } }{ 2 } ,\frac { -\left( 4+y \right) \pm \sqrt { { \left( 3y-2 \right) }^{ 2 } } }{ 2 } $$ となったときの根号(\(\sqrt { } \))部分の計算についてだ。 通常は絶対値を付けて\(\left| 3y+2 \right| \)、\(\left| 3y-2 \right| \)とする。…