National Geographic (Edit)
Nikkei National Geographic (Publishing House)
2022February 8 - (Release date)
Kindle version (Format)
Nature and animals、Magazines featuring countries。
I've been reading this magazine a lot for a long time.。
It was written that glaciers will decrease in the Alps as winter disappears.。
Global warming is about carbon dioxide more than increasing、There is a belief that cosmic rays are affected by space meteorology.。
And、It is said that cooling is more frightening than global warming。
It would be a big problem with food production.。
It seems that no conclusions have yet been drawn about the causes of global warming。
The rest、I didn't know that insulation sheets protect snow。
I've been to a nearby ski resort once.、Winter sports are fun。
It also covered Sudan's new future.。
"My grandfather was Taharqa.、My grandmother is one of the Kandaka!"
(P.59)
This is 2019、It was one of the slogans of demonstrators to overthrow the dictatorship of Omar Bashir.。
The people of Sudan shouted this slogan with the belief that they were heirs to the kings and queens of ancient Egypt.。
I've seen the news of the Arab Spring.、Is it an article in the middle of that?。
About the Arab Spring in Egypt at the time、I know the news that the current government has been overthrown.。
I wonder what kind of swell enveloped the Arabs。
Video sites such as Youtube、I feel that social media such as twitter played an important role。
Demonstrations in Japan remind me of May Day in May。
May Day was a gathering to improve workers' rights.。
I have to study too.。
It was also written about leopards.。
Related Posts
- Do not be fooled into betraying the intuitive mathematical "prejudice" mathematical thinking method 神永 正博 (Written by)Kodansha (Publishing House) / ブルーバックス2014年11月21日 (Release date)New book (Format) 直感では間違えてしまうような数学の題材がいろいろ取り上げられている本。僕の知らないことがたくさん載っていて、Interesting。数学の本はあまり読んだことがなかったからな。本書の内容は下のようなものだ。 第1章 直感を裏切るデータ 第2章 直感を裏切る確率 第3章 直感を裏切る図形 第4章 直感を裏切る論理 感覚的には章が進むにつれ、ちょっと難しくなっていったような気がしたが、僕は全体的になんとなくフィーリングで読み進んだ。 「シンプソンのパラドックス」、「ベイズの定理」、「コーシー分布」、「モンテカルロ法」、「ルーローの多角形」などなど他にもたくさん様々なテーマが載っていた。僕が特におもしろかったのは、「ベンフォードの法則」、「バースデーパラドックス」、「ポアソン分布」、「アークサイン法則」、「四色問題」、「連続体仮設」とかかな。 ベンフォードの法則とは、いろいろなデータの数字は先頭桁の数字が1であるものが非常に多く、2、3、…9と数字が大きくなるにしたがって頻度が下がるというものらしい。不思議だな。「一般化されたベンフォードの法則」は次式で表されるとか。 $$y=\frac { 1 }{ { x }^{ \alpha } }\tag{1}$$ And(1)式で、\(\alpha =1\)のときが、「オリジナルのベンフォードの法則」だという。 ポアソン分布とは、互いに無関係な事象が固まって起きやすく、またしばらく起きないこともあるという分布らしい。いろんな事故や天災にも当てはまるとか。これも不思議だ。 The rest、数学には本質的に証明があまりに長く、人間には全体を理解できない証明も存在するということも書かれていた。And、否定も肯定も証明不可能な命題も存在するらしい。However,、数学者は前へ進み続けるという。第4章の最後に書かれていた文章が印象的だった。 それでもなお、数学者が歩みを止めることはないでしょう。連続体仮設が示した、「否定も肯定も不可能な命題がある」という事実。This is、世紀の大難問に正面から立ち向かった、勇気と努力の結晶なのです。(p.237)
- Oseltamivir Drug(Contents)2001February, 2010(Date) あんふぁんWeb ROCKET NEWS24 こまえスマイルぴーれ 有明みんなクリニック・有明こどもクリニック総合サイト よしだクリニック
- Chart Type Mathematics A part2 [Several In Case] Takaaki Yanagawa (Written by)Zuken Publishing Co., Ltd. (Publishing House)2003April 1, 2016 (Release date)Hardcover (Format) 今日も場合の数の問題を解いていくぞ~問6からだ。Oh well、It's a matter of combinations and circular permuting.。Different(n\)個のものの円順列の総数は\(\left( n-1 \right) !\)represented by。You can use this to solve it.。 And question 7。I made a mistake in this problem.。(1)、(2)Both、simply right four、I calculated it as a permutable to sort the top four.。By the way、Permutables that contain the same are represented by the following formula:。\(n\)Out of 10、同じものがそれぞれ\(p\)Pieces、\(q\)Pieces、\(r\)When there is one、これらを\(n\)What is the total number of permutables to be arranged?、 $${ _{ n }{ C }_{ P }\times }{ _{ n-p }{ C }_{ q }\times }{ _{ n-p-q }{ C }_{ r }=\frac { n! }{ P!q!r! } }\quad \left( p+q+r=n \right) $$ But、Now we're going to find a rectangular path.。This route is in the shape of a triangle.。 According to the answer example(1)3 squares sideways as a temporary road、Think of a three-square-length rectangular path。And、Point C、D、E、They set an F。And then、The path from point C to point D is right 3.、Because it is a permuting of the top three、it's officially required earlier。The rest is an extra route.、(Route through point E)\(+\)(Route through point F)\(-\)(Path through points E and F together)seeking as、It's good to pull.。Hmm.、I see. (2)It's hard to do it all the time.。Point P according to the answer example、Q、R、Establish S。and divided in the following four cases。 Pを通る経路 Qを通り、Pを通る経路 Rを通り、Qを通らない経路 Sを通り、Rを通らない経路 このようにすると、They are so、It's like it counts without duplication.。I didn't know this.。If the problem of such a route is focused on which point to pass, should it be parted?。 Next is Question 8.。6It's a matter of how to get on a boat that can take up to four people.。When distinguishing people、If you don't and you want to distinguish a boat、ask for four combinations if you don't。(1)if you don't distinguish between people and boats.、Only the number of people who share as hinted at is a problem.。(4)The (3)\(\div 2!\)It's like it's to。I solved it by the case、The answer became the same.。Well, I guess that's the way it is.。 Next is Question 9.。(1)is a matter of simple combinations。But、As for me(2)、(3)I made this wrong again.。"Is it a duplicate combination problem?" I thought, "I'm not going to do that."、It was a duplicate permuting problem.。ちなみに重複組合せで\(n\)個の異なるものから重複を許して\(r\)個をとる組合せの数は\({ _{ n+r-1 }{ C }_{ r } }\)represented by。\(n-1\)個の仕切りと\(r\)it's the number of permutings of 0 pieces.。Duplicate permuting, on the other hand,、Different(n\)個のものから重複を許して\(r\)In permuting to take out the pieces、\({ n }^{ r }\)required in。(2)It's easy to use.、(3)even if you're not(2)If you pull from, you will be asked。分からなかったな~ 最後に問10。It's a binary theorem problem.。二項定理とは\({ \left( a+b \right) }^{ n }\)の展開式の一般項(第r+1番目の項)が\({ _{ n }{ C }_{ r } }{ a }^{ n-r }{ B }^{ r }\)is to be written with。(1)You can use this to solve it.。(2)According to the hint, it seems to be good as follows。\({ x }^{ k }\)の係数を\({ a }_{ k }\)They go to。そして\(\frac…