Masaaki Takane (Written by)
Kodansha (Publishing House) / Kodansha Hyundai Shinsho
1979September 20, 2016 (Release date)
Kindle version (Format)
Books written about social science methodologies。
An author who has studied in the United States and obtained a job overseas、Graduate School Study in the USA、Learned from research activities、It is said to be a guide to research methodologies。
But、More than just the social sciences、知的活動に携わる者ではいずれにせよ同じような方法論が必要になってくるらしい。
本書では実験的方法、数量的研究、質的研究、組織的比較例証法、参加観察法などの方法が述べられていた。
僕は疲れてきて、後半はサラサラと本書を読んだので、分かったような分からないような感じだった。
著者は西洋の既成知識を獲得することよりも、新しい知識の創造が大事ではないかと言う。
I see.
Also、現代においては高度な理論を駆使することなしには重要な発明や発見を行うことはできないとも言う。
理論を構築しないといけないんだな~
The rest、筆者の体験からアメリカの大学院の雰囲気などが感じ取れておもしろかった。
アメリカの大学はかなり厳しいらしい。
僕もぬるま湯につかってないで、がんばろう!
Related Posts
- Chart Type Mathematics 1 Part11 [Secondary Function Edition] Toshikazu Sunada (Written by)Zuken Publishing Co., Ltd. (Publishing House)2003April 1, 2016 (Release date)Hardcover (Format) 今回も解いていく。今日は問33からだ。絶対値がたくさんついている。僕はヒントに従って、\(N=2\)のときと\(N=3\)のときを計算してみて、あとは\(N\)が偶数と奇数の場合に分けて、なんとなく答えを出した。However,、正答を見てみると、以下のように回答していた。 $${ a }_{ k }\le x\le { a }_{ k+1 }\quad \left( k=1,2,\cdot \cdot \cdot \cdot \cdot \cdot ,N-1 \right) のとき$$ $$f\left( x \right) =\left( -N+2k \right) x-{ a }_{ 1 }-{ a }_{ 2 }-\cdot \cdot \cdot \cdot \cdot \cdot -{ a }_{ k }+{ a }_{ k+1 }+\cdot \cdot \cdot \cdot \cdot \cdot +{ a }_{ N }$$ あとは\(N\)が偶数の場合と奇数の場合で、\(-N+2k\)が正か負か0かに着目してグラフの形を考えてみれば解けるみたい。こうやってしっかり解かないといけなかったみたいだ。数学2の単調増加、単調減少の考え方も入っているのかな。 次は問34。(1)はまず、2次方程式が異なる実数の2解を持つように判別式\(D>0\)とすればいい。そして共通解を\(x=\alpha \)And so on and so on、2本の2次方程式に代入して計算すると、\({ \alpha }^{ 2 }\)の項がうまい具合に消えて、\(\alpha=1\)と分かる。これで\(a\)の範囲が求められる。(2)は\(f\left( x \right) ={ x }^{ 2 }+ax+4\)、\(g\left( x \right) ={ x }^{ 2 }+4x+\alpha \)And so on and so on、グラフを書いてみる。あとは\(f\left( x \right)\)と\(g\left( x \right)\)が\(x=1\)で交わることに注意してグラフから実数解の大小を考えればいいだろう。 そして問35。\(x\)と\(p\)で表される放物線と三角形が交わるような実数\(p\)の範囲を求めよという問題だ。僕はまずヒントにしたがって放物線が三角形の各頂点を通るときの\(p\)を求めた。あとは\(f\left( x \right) ={ \left( x-p…
- Let's read the history of super-clear literature before Writing - Waseda University Novel Class 三田 誠広 (Written by) Shueisha (Japan) (Publishing House) / 集英社文庫 2000年6月25日 (Release date) Kindle version (Format) ワセダ大学小説教室シリーズの第3弾。 ようやく全部読んだ。 本書が完結編らしい。 小説を書く上で日本文学史から学ぶべきさまざまな知識のエッセンスが凝縮された本とのこと。 僕は日本文学をあまり読んでこなかったので、この本はためになった。 戦前、戦後派、第三の新人、内向の世代、戦後生まれ世代など、いろいろレジェンドな作家がいるのだな。 それぞれの作家の代表的な作品と作風、背景が手軽に分かったような気がする。 前著、前々著でも著者が述べていたが、小説を書く際の大事な考えは「切実さ」と「対立」ということみたい。 なるほどな。 僕は本好きだが、何かの本に書かれていたように、ただ読んでばかりではインプットばかりでつまらない気もする。 何かしら創造したいものだ。
- Chart Formula Mathematics 1 Part10 [Secondary Function Edition] Toshikazu Sunada (Written by)Zuken Publishing Co., Ltd. (Publishing House)2003April 1, 2016 (Release date)Hardcover (Format) 今日も2次関数のB問題を進めていこう。問30からだ。(1)は普通に場合分けをして絶対値を外せばいい。(2)がこの問題のポイントとなるところだろう。【1】\(x\ge a\)のとき、\(a\ge \frac { 1 }{ 2 } \)の場合と\(a<\frac { 1 }{ 2 } \)の場合で最小値\(m\left( a \right) \)が異なるので、場合分けする。同様に【2】\(x<a\)のときは、\(a>-\frac { 1 }{ 2 } \)の場合と\(a\le -\frac { 1 }{ 2 } \)の場合で場合分けが必要だ。そしたら\(a\ge \frac { 1 }{ 2 } \)、\(-\frac { 1 }{ 2 } <a<\frac { 1 }{ 2 } \)、\(a\le -\frac { 1 }{ 2 } \)の場合で【1】と【2】のそれぞれの差をとってどちらがより小さいかを明らかにし、関数\(f\left( x \right) \)の最小値\(m\left( a \right) \)を求めることになる。僕はグラフを見てなんとなく直感で解いたが、それではダメだったんだな。しっかり場合分けが必要みたいだ。(3)The (2)がちゃんと解けていれば簡単だ。 次は問31。First(1)。今\(a\)、\(b\)、\(x\)、\(y\)全てが正の実数なので、以下の不等式 $$\frac { x }{ a } \le \frac { y }{ B } $$ の両辺に\(ab\)をかけたり、2乗したりしても、不等号の向きは変わらないし、通常は2乗することで生じる余計な解が含まれることもない。あとは条件式を利用して\({ y }^{ 2 }\)を消去すればいい。(2)The (1)から\(0\le x\le \frac { a }{ \sqrt { { a }^{…