Toshikazu Sunada (Written by)
Zuken Publishing Co., Ltd. (Publishing House)
2004年3月1日 (Release date)
Hardcover (Format)
Today we will proceed with the number 2。
First of all, Question 1。
Perform approximate fractional equations and quadruple arithmetic calculations。
Next up is Q2.。
Solving by coefficient comparison method and numerical assignment method。
In the numerical assignment method, do not forget to check the reverse。
And then there's Question 3.。
Conditional expressions can be solved by making them easy。
Question 4.。
Proportional formula puts =k。
Further Q5。
大小比較は差を作るという。
一般に\( (調和平均)\leq(相乗平均)\leq(相加平均) \)その後は問6。
普通に計算すればいい。
問7は\( (左辺)-(右辺)\leq0 \)を示す。
ヒントによるとシュワルツ不等式を使う別解もある。
そうして問8はA、Bが0以上なら2乗しても大小関係は変わらない。
今日はここまでで次回はB問題を解いていこう。
Related Posts
- Chart Formula Mathematics 1 part2 [Equations and Inequality] Toshikazu Sunada (Written by) Zuken Publishing Co., Ltd. (Publishing House) 2003April 1, 2016 (Release date) Hardcover (Format) 今日も進めていきます。 今回は問4からだ。 式を因数分解せよということで(1)-(10)まで式が10題並んでいる。 面倒だが計算するか。 (6)、(9)では以下の公式を使った。 $${ \left( a+b \right) }^{ 3 }={ a }^{ 3 }+3{ a }^{ 2 }b+3a{ B }^{ 2 }+{ B }^{ 3 }$$ $${ \left( a-b \right) }^{ 3 }={ a }^{ 3 }-3{ a }^{ 2 }b+3a{ B }^{ 2 }-{ B }^{ 3 }$$ $${ a }^{ 3 }+{ B }^{ 3 }=\left( a+b \right) \left( { a }^{ 2 }-ab+{ B }^{ 2 } \right) $$ $${ a }^{ 3 }-{ B }^{ 3 }=\left( a-b \right) \left( { a }^{ 2…
- Chart math 1 part16 [shape and weighing] Toshikazu Sunada (Written by)Zuken Publishing Co., Ltd. (Publishing House)2003April 1, 2016 (Release date)Hardcover (Format) 今日で第3章「図形と計量」が終わりだ。つまりはこの問題集「チャート式 数学1」が終わりということになる。最後なのでがんばっていこう。 まずは問52。4辺の長さが分かっているが、角度が分からない凸四角形ABCDについて、\(\triangle \)ABDの面積を\(S\)、\(\triangle \)BCDの面積を\(T\)とする。(1)は\({ S }^{ 2 }+{ T }^{ 2 }\)のとりうる値の範囲を求めよという問題だ。ヒントにあるように\(\angle DAB=\alpha \)とおくと、余弦定理や面積の公式などから\({ S }^{ 2 }+{ T }^{ 2 }\)は\(\cos { \alpha } \)の2次式として表される。あとは\(\cos { \alpha } =t\)And so on and so on、計算すればいい。 ただここで問題なのは\(\alpha \)の範囲である。条件としては四角形ABCDが凸四角形であるということだ。ヒントによると凸四角形とは内角が4つとも\(180°\)より小さい四角形だという。What you mean、四角形の4つの角について以下が成り立つ。 $$0°<\angle A,\angle B,\angle C,\angle D<180°$$ $$\angle A+\angle B+\angle C+\angle D=360°$$ また、余弦定理から以下の関係も求められる。 $$\cos { \angle C } =-1+\sqrt { 3 } \cos { \angle A } $$ $$\cos { \angle D } =-1+\sqrt { 3 } \cos { \angle B } $$ 他にも正弦定理からも方程式が求められる…となんとか\(\angle A=\alpha\)の範囲を計算しようと思ったが、あまりに面倒なのでやめた… 次に僕は三角形の成立条件を考えてみた。 $$\left| b-c \right| <a<b+c$$ という三角形の辺の関係式だ。しかしこれだと\(0°<\alpha <90°\)となってしまうのだ。正答は\(30°<\alpha <90°\)They are。やはり今回は凸四角形の条件ということで、三角形の成立条件ではうまくいかないみたいだ。三角形の成立条件だけだと、ブーメランみたいな形の四角形でもOKということになってしまうからな。 解答例によると実際に図示してみて考えるといいらしい。今回は\(\angle C\)および\(\angle D\)が\(180°\)となるときに、うまいこと四角形ABCDが直角三角形になる。これにより\(\alpha\)の範囲が求められるという。計算ではなかなか範囲を求めるのは難しいので、図を描いてみるというのが正解だったんだな~…(1)が分かれば(2)は簡単だ。 次は問53。正五角形についての問題だ。これはヒントにあるように、正五角形\(F\)と正五角形\(G\)が相似のとき、長さが\(k\)倍なら面積は\({ k }^{ 2 }\)倍であることを利用すればいいみたい。平面図形がなんであれ、相似なら面積は\({ k…
- Chart Formula Mathematics 1 Part 5 [Equations and Inequalities] Toshikazu Sunada (Written by) Zuken Publishing Co., Ltd. (Publishing House) 2003April 1, 2016 (Release date) Hardcover (Format) 今日も進めていくぞ~。 問15からだ。 (1)は解の公式を利用して解を求め、誘導にしたがって因数分解すればいい。 (2)は\(P\left( x,y \right) =0\)を、\(x\)についての2次方程式と考えて解の公式で解く。 そして\(x=f\left( y \right) \)、\(x=g\left( y \right) \)とすると、\(P\left( x,y \right) =\left\{ x-f\left( y \right) \right\} \left\{ x-g\left( y \right) \right\} \)と因数分解できる。 Now、\(P\left( x,y \right)\)が\(x\)、\(y\)についての1次式の積として表されるので、解の公式で求められた解の\(\sqrt { } \)内の\(y\)についての2次式が、\(y\)の1次式の平方数(2乗)の形にならないといけない。 このとき\(y\)についての2次式は重解をもち、判別式\(D=0\)They are。 これから\(k\)が求まる。 最初は\(P\left( x,y \right) =0\)を\(x\)についての2次式とみて解を求め、次は出てきた解の\(y\)についての2次式に注目して判別式を利用するというおもしろい問題だった。 あと気になったのは $$x=\frac { -\left( 4+y \right) \pm \sqrt { { \left( 3y+2 \right) }^{ 2 } } }{ 2 } ,\frac { -\left( 4+y \right) \pm \sqrt { { \left( 3y-2 \right) }^{ 2 } } }{ 2 } $$ となったときの根号(\(\sqrt { } \))部分の計算についてだ。 通常は絶対値を付けて\(\left| 3y+2 \right| \)、\(\left| 3y-2 \right| \)とする。…