Takaaki Yanagawa (Written by)
Zuken Publishing Co., Ltd. (Publishing House)
2003April 1, 2016 (Release date)
Hardcover (Format)
today also solve the problem of the number of cases。
First of all, question 15。
I solved it as follows。
At first、If it rotates and overlaps, it is also a different shape.、全ての塗り分け方は\({ 2 }^{ 9 }=512\)通りある。
また回転しても形が変わらない塗り分け方を数えると8通りある。
In addition、回転したら形が2つになる塗り分け方は12通りある。
残りは回転したら形が4つになる塗り分け方である。
よってその塗り分け方は、
$$\frac { 512-\left( 8+2\times 12 \right) }{ 4 } =120$$
通りである。
これらから、求める答えは
$$8+12+120=140$$
通りだ。
しかしこのやり方だと、回転したとき形が2つになる塗り分け方を数えるのが分かりにくい。
数えもれが出てしまう可能性が大だ。
解答例では9マスを中央の正方形と周りの4つの長方形に分けて計算していた。
長方形の塗り方は4通りで、この中から周りの4つの長方形がの塗り分け方が
- 1種類のとき
- 2種類のとき
- 3種類のとき
- 4種類のとき
を場合分けして考えればいいという。
そういうものか~
次は問16。
(1)、(2)The \(a=6\)なので南北方向の敷き詰め方は決まる。
あとは東西方向の長さに着目すればいい。
(3)はヒントによると、まず辺ABに沿った部分から敷くと4通りが考えられる。
And、それらの場合の残り部分の敷き詰め方を考えればいい。
(1)、(2)のやり方も使って解いていくことになるが、僕は計算間違いをしてしまった。
なかなかミスが多くて困ったものだ。
その次は問17。
展開式の一般項は二項定理を用いて次式で表される。
$${ _{ m }{ C }_{ j } }{ \cdot _{ n }{ C }_{ k }{ x }^{ 2j+3k } }$$
The rest\({ x }^{ 6 }\)について\(2j+3k=6\)を満たす\(0\)以上の整数\(\left( j,k \right) \)を考えればいい。
Then\(m\)の範囲を求めて、それぞれの\(m\)について\(n\)が存在するかを考える。
これで(1)が解けた。
(1)が分かれば(2)は簡単に解ける。
最後に問18。
(1)は背理法を使うなりして簡単に解ける。
まぁ背理法を使わなくても解けるみたいだけどな。
(2)はヒントによると以下のようにするのがポイントみたいだ。
$$\left( { 2 }^{ p-1 }-1 \right) \times 2={ 2 }^{ p }-2={ \left( 1+1 \right) }^{ p }-2$$
\({ \left( 1+1 \right) }^{ p }\)に二項定理を利用すると、第1項と第p+1項がそれぞれ\(1\)So、うまい具合に\(-2\)と打ち消しあう。
The rest(1)を利用すれば素数\(p\)で割り切れると分かる。
\(\left( { 2 }^{ p-1 }-1 \right) \)に\(2\)をかけるところがコツだな~
きれいに解ける問題だったが、僕はヒントがなければ分からなかったような気がする。
とにかくこれで第1章「場合の数」の総合演習が終わった。
次回からは第2章「確率」の総合演習を解いていこう。
Related Posts
- Chart Formula Mathematics 1 part12 [Secondary Function Edition] Toshikazu Sunada (Written by) Zuken Publishing Co., Ltd. (Publishing House) 2003April 1, 2016 (Release date) Hardcover (Format) 今日で2次関数編がラストだ。 問36からやっていこう。 ヒントにあるように以下のようにする。 $$\begin{eqnarray*}f\left( x \right) &=&{ x }^{ 2 }-ax+b-\left( -{ x }^{ 2 }-bx+a \right) \\ &=&2{ x }^{ 2 }-\left( a-b \right) x-\left( a-b \right) \end{eqnarray*}$$ そして\(a-b=t\left( t\neq 0 \right) \)And so on and so on、\(f\left( x \right) \)について\(f\left( x \right) <0\)を満たす実数\(x\)が必ず存在するので、2次関数の頂点の\(y\)座標は\(0\)より小さい。 よって\(T>0\)、\(T<-8\)となる。 あとはヒントにあるように放物線\(y=f\left( x \right) \)の軸は直線\(x=\frac { T }{ 4 } \)なのでこの軸に最も近い整数を考えればいい。 僕はここから悩んでしまって、次のようにした。 \(\frac { T }{ 4 } \)に最も近い整数は、 $$t=4k\left(kは0,-1,-2を除く整数 \right)のときはn=k$$ $$4k<t\le 4k+2\left(kは-1,-2を除く整数 \right)のときはn=k$$ $$4k+2<T< 4\left( k+1 \right) \left(kは-1,-2を除く整数 \right)のときはn=k+1$$ そして\(x=n\)を\(f\left( x \right)\)に代入すると\(f\left( x \right)\)は\(t\)の1次式と見ることができる。 あとは考えている\(t\)の範囲において、これまた\(k\)の範囲についても考慮しながら最大値の議論をしていくと、\(f\left( n \right) \le -2\)または\(f\left( n \right) < 0\)と分かり、題意を満たす整数\(n\)が必ず存在すると分かった。 解くのにかなり時間がかかってしまった… 実際の試験だったら時間がかかりすぎてしまって、僕は明らかにこの問題を解けていないだろう。 However、正答例ではもっと簡単に解いていた。 $$T<-8のときf\left( -2 \right) =8+t<0$$…
- Chart Equation Mathematics A Part 5 【Probability】 Takaaki Yanagawa (Written by)Zuken Publishing Co., Ltd. (Publishing House)2003April 1, 2016 (Release date)Hardcover (Format) 今回から確率の総合演習を解いていく。まずは問19。ヒントによると確率の計算の基本は全事象\(U\)の場合の数\(N\)And、事象\(A\)の起こる場合の数\(a\)を求めて、\(P\left( A \right) =\frac { a }{ N } \)とすることである。Now、さいころは異なるものと考えて、\(N={ 6 }^{ 4 }\)They are。The rest(1)-(4)について\(a\)を考えればいい。特に注意が必要なのは(4)かな。僕は最初解いたときに確率\(P\left( A \right)\)が\(1\)を超えてしまい、間違いに気づいた。ちなみに\(a={ _{ 6 }{ C }_{ 1 } }{ \times _{ 5 }{ C }_{ 2 }\times }{ _{ 4 }{ C }_{ 2 } }{ \times _{ 2 }{ C }_{ 1 } }\)と解けた。解答例とは違うやり方だが、同じ答えになる。 次は問20。円順列の問題だ。(2)、(3)で隣り合う人たちを1組と考えて円順列を計算するのがポイントかな。これは簡単だった。 その次は問21。(1)、(2)は簡単。(3)は独立試行の問題だ。独立な試行の確率は\(P\left( C \right) =P\left( A \right) P\left( B \right) \)と表されるので、普通に解けばいい。これも簡単だ。 最後は問22。これは反復試行の問題だ。反復試行の確率は次のようになるらしい。 $${ _{ n }{ C }_{ r }{ P }^{ r }{ q }^{ n-r } }\quad \left(ただしq=1-p \right) $$ あとは解ける、簡単簡単。と思ったら僕はこの問題を間違えてしまった。最後は必ず白玉を取り出さないといけなかったんだな。そうでないと、今の場合途中で白玉を3個取り出して、試行が終了してしまう。なるほどね。 今回はこれで終わり。僕は特に確率が得意というわけではないのだが、今日のこれらの問題は簡単だった。これはサクサク進むなぁ~意外と確率の問題は解きやすいのかもしれない。Well, it's still A problem.、It may get harder and harder.。I'll do it again next time.。
- Chart Formula Mathematics 1 Part10 [Secondary Function Edition] Toshikazu Sunada (Written by)Zuken Publishing Co., Ltd. (Publishing House)2003April 1, 2016 (Release date)Hardcover (Format) 今日も2次関数のB問題を進めていこう。問30からだ。(1)は普通に場合分けをして絶対値を外せばいい。(2)がこの問題のポイントとなるところだろう。【1】\(x\ge a\)のとき、\(a\ge \frac { 1 }{ 2 } \)の場合と\(a<\frac { 1 }{ 2 } \)の場合で最小値\(m\left( a \right) \)が異なるので、場合分けする。同様に【2】\(x<a\)のときは、\(a>-\frac { 1 }{ 2 } \)の場合と\(a\le -\frac { 1 }{ 2 } \)の場合で場合分けが必要だ。そしたら\(a\ge \frac { 1 }{ 2 } \)、\(-\frac { 1 }{ 2 } <a<\frac { 1 }{ 2 } \)、\(a\le -\frac { 1 }{ 2 } \)の場合で【1】と【2】のそれぞれの差をとってどちらがより小さいかを明らかにし、関数\(f\left( x \right) \)の最小値\(m\left( a \right) \)を求めることになる。僕はグラフを見てなんとなく直感で解いたが、それではダメだったんだな。しっかり場合分けが必要みたいだ。(3)The (2)がちゃんと解けていれば簡単だ。 次は問31。First(1)。今\(a\)、\(b\)、\(x\)、\(y\)全てが正の実数なので、以下の不等式 $$\frac { x }{ a } \le \frac { y }{ B } $$ の両辺に\(ab\)をかけたり、2乗したりしても、不等号の向きは変わらないし、通常は2乗することで生じる余計な解が含まれることもない。あとは条件式を利用して\({ y }^{ 2 }\)を消去すればいい。(2)The (1)から\(0\le x\le \frac { a }{ \sqrt { { a }^{…