Toshikazu Sunada (Written by)
Zuken Publishing Co., Ltd. (Publishing House)
2003April 1, 2016 (Release date)
Hardcover (Format)
今日で第3章「図形と計量」が終わりだ。
つまりはこの問題集「チャート式 数学1」が終わりということになる。
最後なのでがんばっていこう。
まずは問52。
4辺の長さが分かっているが、角度が分からない凸四角形ABCDについて、\(\triangle \)ABDの面積を\(S\)、\(\triangle \)BCDの面積を\(T\)とする。
(1)The \({ S }^{ 2 }+{ T }^{ 2 }\)のとりうる値の範囲を求めよという問題だ。
As in the hint\(\angle DAB=\alpha \)とおくと、余弦定理や面積の公式などから\({ S }^{ 2 }+{ T }^{ 2 }\)The \(\cos { \alpha } \)の2次式として表される。
The rest\(\cos { \alpha } =t\)And so on and so on、計算すればいい。
ただここで問題なのは\(\alpha \)の範囲である。
条件としては四角形ABCDが凸四角形であるということだ。
ヒントによると凸四角形とは内角が4つとも\(180°\)より小さい四角形だという。
What you mean、四角形の4つの角について以下が成り立つ。
$$0°<\angle A,\angle B,\angle C,\angle D<180°$$
$$\angle A+\angle B+\angle C+\angle D=360°$$
Also、余弦定理から以下の関係も求められる。
$$\cos { \angle C } =-1+\sqrt { 3 } \cos { \angle A } $$
$$\cos { \angle D } =-1+\sqrt { 3 } \cos { \angle B } $$
他にも正弦定理からも方程式が求められる…
となんとか\(\angle A=\alpha\)の範囲を計算しようと思ったが、あまりに面倒なのでやめた…
次に僕は三角形の成立条件を考えてみた。
$$\left| b-c \right| <a<b+c$$
という三角形の辺の関係式だ。
しかしこれだと\(0°<\alpha <90°\)となってしまうのだ。
正答は\(30°<\alpha <90°\)They are。
やはり今回は凸四角形の条件ということで、三角形の成立条件ではうまくいかないみたいだ。
三角形の成立条件だけだと、ブーメランみたいな形の四角形でもOKということになってしまうからな。
解答例によると実際に図示してみて考えるといいらしい。
This time\(\angle C\)および\(\angle D\)But\(180°\)となるときに、うまいこと四角形ABCDが直角三角形になる。
By this\(\alpha\)の範囲が求められるという。
計算ではなかなか範囲を求めるのは難しいので、図を描いてみるというのが正解だったんだな~…
(1)が分かれば(2)は簡単だ。
次は問53。
正五角形についての問題だ。
これはヒントにあるように、正五角形\(F\)と正五角形\(G\)が相似のとき、長さが\(k\)倍なら面積は\({ k }^{ 2 }\)倍であることを利用すればいいみたい。
平面図形がなんであれ、相似なら面積は\({ k }^{ 2 }\)倍になるんだな。
覚えておこう。
あとは計算が面倒だが、がんばれば解ける。
僕は計算ミスしてしまったので、気をつけないといけない。
そして問54。
(1)は簡単。
(2)And(3)の問題を僕は間違えてしまった。
直円錐台の側面の展開図をちゃんと描いて、ABの延長とCDの延長の交点をOとするのがポイントみたいだ。
そしたら断面図の関係と円周の長さの関係を考えて、余弦定理から最短の曲線BEの長さが求まるらしい。
(3)の線分CPの長さは、三角形の面積の公式を使うと簡単に求められるみたい。
I see...
最後に問55。
三角柱を点ABCを通る平面で切断した立体の体積を求めるという問題だ。
ヒントによるとまず3つの三角錐A-DEF、A-BEF、A-BFCに分割して考える。
1つ目の三角錐A-DEFの体積は普通に求まる。
Also、A-BEFとA-BFCの体積は底面をうまくとらえて等積変形するといいらしい。
つまり三角錐の底面が同じで高さが同じなら、体積が等しいという関係を使うのだ。
Now、三角柱の3辺は平行なので、うまい具合に2つ目の三角錐A-BEFと三角錐D-BEFの体積が等しくなる。
同様に3つ目の三角錐A-BFCは三角錐D-BFCと体積が等しくなり、これは三角錐E-CDFと体積が等しくなるという。
不思議だ…
あっさりと立体の体積が求められた。
Don't be a study.。
now、僕は間違えまくってしまった。
図形問題が平面、立体どちらも僕は苦手みたいだな~。
とにかくこれで数学1の総合演習の問題が全て終わった。
次回からは数学Aの問題を解いていこうと思う。
Related Posts
- Chart Equation Mathematics 1 Part4 [Equations and Inetheles] Toshikazu Sunada (Written by)Zuken Publishing Co., Ltd. (Publishing House)2003April 1, 2016 (Release date)Hardcover (Format) I'll figure it out today.。問12からだ。ヒントによると\(x\)に関する2次方程式の解がすべて有理数となる条件は、判別式\(D\)が平方数であることだという。え~っと、2次方程式\(a{ x }^{ 2 }+bx+c=0\)の解は、解の公式を用いて次式で表される。 $$x=\frac { -b\pm \sqrt { { B }^{ 2 }-4ac } }{ 2a }=\frac { -b\pm \sqrt { D } }{ 2a }\tag{1} $$ 有理数とは分数\(\frac { m }{ n } \)(\(m\)、\(n\)は整数、\(n\neq 0\))の形で表される数であるという。たしかに、\(a\)、\(b\)、\(c\)が整数のとき、\(\sqrt { D } \)が有理数なら\(x\)は有理数になる。\(\sqrt { D } \)が無理数なら有理数\(+\)無理数で\(x\)は無理数だな。As for me $${ m }^{ 2 }-28={ l }^{ 2 }$$ (\(l\)は\(0\)以上の整数)とおいて、\(m\)の範囲を\(2\sqrt { 7 } \le m\le 14\)と見つけてから、総当たりで探していった。However,、回答を見るともっと簡単なやり方があったようだ。 $${ m }^{ 2 }-{ l }^{ 2 }=28$$ $$\left( m+l \right) \left( m-l \right) =28$$ として、\(m\)が自然数、\(l\)が\(0\)以上の整数であることと、\(m+l\)、\(m-l\)の差が偶数であり両者は奇数または偶数であることから、\(m+l=14\)、\(m-l=2\)と決まってしまうらしい。こっちのほうが分かりやすいな。 次は問13。A問題が終了ということで、ちょっと難しくなるのだろうか。まぁやっていこう。(1)は普通に計算すればいいな。(2)も $$ac+bd=1\tag{1}$$ $$ad-bc=0\tag{2}$$ これら2式に\(a\)、\(b\)、\(c\)、\(d\)をかけて足したり引いたりして変形すると答えが求まる。 そして問14。(1)は簡単。(2)は分からなくて迷った。ヒントには平方の差を作ると書いてあるが、う~ん?しばらく悩んだがやはり分からなかったので答えを見た。なんだ、そういうことだったのか。係数が実数の範囲で因数分解するとは下のようなことをすればよかったらしい。 $$\begin{eqnarray*}{ x }^{ 6 }+1&=&\left( { x }^{ 2 }+1…
- Chart math 1 part13 [shape and weighing] Toshikazu Sunada (Written by) Zuken Publishing Co., Ltd. (Publishing House) 2003April 1, 2016 (Release date) Hardcover (Format) 第3章「図形と計量」に進んだ。 総合演習をAから解いていこう。 三角比とかが出題されるみたいだな。 まずは問38。 僕はいろいろな公式を使って式を変形して解いた。 以下のようなものだ。 $$\sin ^{ 2 }{ \alpha =\frac { 1-\cos { 2\alpha } }{ 2 } } $$ $$\cos ^{ 2 }{ \alpha =\frac { 1+\cos { 2\alpha } }{ 2 } } $$ $$\sin { \left( 90°-\alpha \right) } =\cos { \alpha } $$ $$\cos { \left( 90°-\alpha \right) } =\sin { \alpha } $$ But、今\(\alpha =22.5°\)なので\(3\alpha =90°-\alpha \)、\(5\alpha =180°-3\alpha \)、\(7\alpha =180°-\alpha \)であることに注目すれば、式が\(\sin { \alpha } \)、\(\cos { \alpha } \)のみで表されて、もっと簡単になったみたいだ。 次は問39。 以下の公式を用いて、変形していけば簡単に解ける。 $$\sin ^{ 2 }{ \theta + } \cos ^{ 2 }{ \theta =1…
- Chart Formula Mathematics 1 part12 [Secondary Function Edition] Toshikazu Sunada (Written by) Zuken Publishing Co., Ltd. (Publishing House) 2003April 1, 2016 (Release date) Hardcover (Format) 今日で2次関数編がラストだ。 問36からやっていこう。 ヒントにあるように以下のようにする。 $$\begin{eqnarray*}f\left( x \right) &=&{ x }^{ 2 }-ax+b-\left( -{ x }^{ 2 }-bx+a \right) \\ &=&2{ x }^{ 2 }-\left( a-b \right) x-\left( a-b \right) \end{eqnarray*}$$ そして\(a-b=t\left( t\neq 0 \right) \)And so on and so on、\(f\left( x \right) \)について\(f\left( x \right) <0\)を満たす実数\(x\)が必ず存在するので、2次関数の頂点の\(y\)座標は\(0\)より小さい。 よって\(T>0\)、\(T<-8\)となる。 あとはヒントにあるように放物線\(y=f\left( x \right) \)の軸は直線\(x=\frac { T }{ 4 } \)なのでこの軸に最も近い整数を考えればいい。 僕はここから悩んでしまって、次のようにした。 \(\frac { T }{ 4 } \)に最も近い整数は、 $$t=4k\left(kは0,-1,-2を除く整数 \right)のときはn=k$$ $$4k<t\le 4k+2\left(kは-1,-2を除く整数 \right)のときはn=k$$ $$4k+2<T< 4\left( k+1 \right) \left(kは-1,-2を除く整数 \right)のときはn=k+1$$ そして\(x=n\)を\(f\left( x \right)\)に代入すると\(f\left( x \right)\)は\(t\)の1次式と見ることができる。 あとは考えている\(t\)の範囲において、これまた\(k\)の範囲についても考慮しながら最大値の議論をしていくと、\(f\left( n \right) \le -2\)または\(f\left( n \right) < 0\)と分かり、題意を満たす整数\(n\)が必ず存在すると分かった。 解くのにかなり時間がかかってしまった… 実際の試験だったら時間がかかりすぎてしまって、僕は明らかにこの問題を解けていないだろう。 However、正答例ではもっと簡単に解いていた。 $$T<-8のときf\left( -2 \right) =8+t<0$$…