Toshikazu Sunada (Written by)
Zuken Publishing Co., Ltd. (Publishing House)
2003April 1, 2016 (Release date)
Hardcover (Format)
今日も進めていくぞ~。
問15からだ。
(1)は解の公式を利用して解を求め、誘導にしたがって因数分解すればいい。
(2)The \(P\left( x,y \right) =0\)を、\(x\)についての2次方程式と考えて解の公式で解く。
And\(x=f\left( y \right) \)、\(x=g\left( y \right) \)とすると、\(P\left( x,y \right) =\left\{ x-f\left( y \right) \right\} \left\{ x-g\left( y \right) \right\} \)と因数分解できる。
Now、\(P\left( x,y \right)\)But\(x\)、\(y\)についての1次式の積として表されるので、解の公式で求められた解の\(\sqrt { } \)内の\(y\)についての2次式が、\(y\)の1次式の平方数(2乗)の形にならないといけない。
このとき\(y\)についての2次式は重解をもち、判別式\(D=0\)They are。
これから\(k\)が求まる。
最初は\(P\left( x,y \right) =0\)を\(x\)についての2次式とみて解を求め、次は出てきた解の\(y\)についての2次式に注目して判別式を利用するというおもしろい問題だった。
あと気になったのは
$$x=\frac { -\left( 4+y \right) \pm \sqrt { { \left( 3y+2 \right) }^{ 2 } } }{ 2 } ,\frac { -\left( 4+y \right) \pm \sqrt { { \left( 3y-2 \right) }^{ 2 } } }{ 2 } $$
となったときの根号(\(\sqrt { } \))部分の計算についてだ。
通常は絶対値を付けて\(\left| 3y+2 \right| \)、\(\left| 3y-2 \right| \)とする。
And\(y\)の値について場合分けして絶対値を外すことになるだろう。
しかし今回は解に\(\pm\)がついているので、場合分けをしなくても結果は同じになるみたいだ。
$$\pm \sqrt { { \left( 3y+2 \right) }^{ 2 } } =\pm \left( 3y+2 \right) $$
ということだな。
\(\pm \sqrt { { \left( 3y-2 \right) }^{ 2 } } \)についても同じ。
そして問16。
$$f\left( { x }^{ 2 }+a \right) -x=\left( { x }^{ 2 }-x+a \right) \left( { x }^{ 2 }+x+a+1 \right) =0\tag{1}$$
(1)式のすべての解は方程式\(f\left( { x } \right) -x={ x }^{ 2 }-x+a=0\)の解であるというので、
$${ x }^{ 2 }+x+a+1=0\tag{2}$$
のすべての解が
$${ x }^{ 2 }-x+a=0\tag{3}$$
の解になればいい。
(2)式について解の公式を使い、(3)式から(2)式を使って\({ x }^{ 2 }\)を消去したものに、\(x\)を代入すると\(a\)が求められるな。
最後に問17。
First(1)。
条件\(a<b\)More、\(\frac { 1 }{ b } <\frac { 1 }{ a } \)They are。
\(\frac { 2 }{ b } <\frac { 1 }{ a } +\frac { 1 }{ b } <\frac { 1 }{ 4 } \)となり\(b>8\)be。
あとは最少の\(b=9\)として\(a\)を求めればいい。
(2)は変数が1つ増えて3つになっているが、(1)と同様に\(c\)の範囲を求めて最も小さい\(c\)を決めて、\(a\)、\(b\)もこれまた同様に求めればいいな。
これで第1章「方程式と不等式」の総合演習がすべて終わった。
今度から第2章「2次関数」について進めていこう。
Related Posts
- Chart Formula Mathematics 1 part2 [Equations and Inequality] Toshikazu Sunada (Written by) Zuken Publishing Co., Ltd. (Publishing House) 2003April 1, 2016 (Release date) Hardcover (Format) 今日も進めていきます。 今回は問4からだ。 式を因数分解せよということで(1)-(10)まで式が10題並んでいる。 面倒だが計算するか。 (6)、(9)では以下の公式を使った。 $${ \left( a+b \right) }^{ 3 }={ a }^{ 3 }+3{ a }^{ 2 }b+3a{ B }^{ 2 }+{ B }^{ 3 }$$ $${ \left( a-b \right) }^{ 3 }={ a }^{ 3 }-3{ a }^{ 2 }b+3a{ B }^{ 2 }-{ B }^{ 3 }$$ $${ a }^{ 3 }+{ B }^{ 3 }=\left( a+b \right) \left( { a }^{ 2 }-ab+{ B }^{ 2 } \right) $$ $${ a }^{ 3 }-{ B }^{ 3 }=\left( a-b \right) \left( { a }^{ 2…
- Chart Formula Mathematics 1 Part10 [Secondary Function Edition] Toshikazu Sunada (Written by)Zuken Publishing Co., Ltd. (Publishing House)2003April 1, 2016 (Release date)Hardcover (Format) 今日も2次関数のB問題を進めていこう。問30からだ。(1)は普通に場合分けをして絶対値を外せばいい。(2)がこの問題のポイントとなるところだろう。【1】\(x\ge a\)のとき、\(a\ge \frac { 1 }{ 2 } \)の場合と\(a<\frac { 1 }{ 2 } \)の場合で最小値\(m\left( a \right) \)が異なるので、場合分けする。同様に【2】\(x<a\)のときは、\(a>-\frac { 1 }{ 2 } \)の場合と\(a\le -\frac { 1 }{ 2 } \)の場合で場合分けが必要だ。そしたら\(a\ge \frac { 1 }{ 2 } \)、\(-\frac { 1 }{ 2 } <a<\frac { 1 }{ 2 } \)、\(a\le -\frac { 1 }{ 2 } \)の場合で【1】と【2】のそれぞれの差をとってどちらがより小さいかを明らかにし、関数\(f\left( x \right) \)の最小値\(m\left( a \right) \)を求めることになる。僕はグラフを見てなんとなく直感で解いたが、それではダメだったんだな。しっかり場合分けが必要みたいだ。(3)The (2)がちゃんと解けていれば簡単だ。 次は問31。First(1)。今\(a\)、\(b\)、\(x\)、\(y\)全てが正の実数なので、以下の不等式 $$\frac { x }{ a } \le \frac { y }{ B } $$ の両辺に\(ab\)をかけたり、2乗したりしても、不等号の向きは変わらないし、通常は2乗することで生じる余計な解が含まれることもない。あとは条件式を利用して\({ y }^{ 2 }\)を消去すればいい。(2)The (1)から\(0\le x\le \frac { a }{ \sqrt { { a }^{…
- Chart Type Mathematics A part3 [Several In Case] Takaaki Yanagawa (Written by)Zuken Publishing Co., Ltd. (Publishing House)2003April 1, 2016 (Release date)Hardcover (Format) From today, I will solve the general exercise B problem of Chapter 1 "Number of Cases"。First of all, it's question 11.。(A)From the conditions of、Positive integer(m\)は\(2\)を素因数にもたず、\(9={ 3 }^{ 2 }\)を因数にもつと分かる。(1)は背理法で証明すればいい。\(m\)の正の約数で素数となるものが3つ以上あるとする。それらを\(3\)、\(p\)、\(q\)、…とする。ただし\(p\)、\(q\)、…は\(5\)以上の素数である。すると\(m\)は以下のように素因数分解される。 $$m={ 3 }^{ k }{ P }^{ a }{ q }^{ B }\cdot \cdots \quad \left( k\ge 2,\quad a\ge 1,\quad b\ge 1,\quad \cdots \right) $$ このとき\(m\)の正の約数の個数は次式で表される。 $$\left( k+1 \right) \left( a+1 \right) \left( b+1 \right) \cdots $$ Now、これは\(12\)以上となり、条件(B)に適さない。よって\(m\)の正の約数で素数となるものは高々2個だ。I see. (2)は\(m\)の正の約数となる素数が、 \(3\)のみ \(3\)と\(5\)以上の素数\(p\) の場合の2通りを考えればいい。おもしろい問題だったな。 次は問12。(1)The 、僕は以下の4通りに分けて計算して足し合わせて、暗証番号の総数から引いた。 同じ番号が2つずつの2組がある場合 同じ番号が2つの1組がある場合 同じ番号が3つ続く場合 同じ番号が4つ続く場合 だが、解答例を見ると同じ数字が続かない番号の個数ということで、\(10\times 9\times 9\times 9\)と簡単に求められるみたいだ。そういうものか。 (2)はヒントによると\(0\sim 9\)は対等である。よって\(a=0\)の場合を数えて10倍すれば答えが出るらしい。解き方としては以下の3通りに分けて数え上げればいいとのことだ。 \(b=2\)In the case of \(b=8\)In the case of \(b=3,4,\cdots , 7\) As for me、ヒントがないとこれは気付かなかっただろう。う~ん、難しいな。 その次は問13。同じものを含む順列の問題だ。(1)The (両端の文字が異なる)\(=\)(全体)\(-\)(両端の文字が同じ)、として解けばいい。(2)は以下のように場合分けする。 文字が全て異なるとき 同じ文字2個を1組だけ含むとき 同じ文字を2個ずつ2組含むとき 同じ文字を3個含むとき この問題は解きやすいほうだったかな。 最後に問14。As in the hint、\(x\)座標から\(S\)、\(T\)の回数の和が、\(y\)座標から\(S\)、\(T\)の回数の差が分かる。(2)、(3)について僕は樹形図を書いて解いた。そんなに複雑でないので力技でも解けるみたいだ。題意を満たすように解くと、点\(\left( 1,1 \right) \)から点\(\left( 7,1 \right) \)へ移る途中に、ある点Pで\(x\)軸上にあるとする。このとき、点P以降の経路で\(S\)と\(T\)を入れ替えると点\(\left( 7,-1 \right) \)に移ることを利用するという。\(S\)と\(T\)を入れ替えても、同じものを含む順列の個数は変わらないからな。点P以前の経路は共通でなので、(点P以前の経路の数)\(\times \)(点P以降の経路の数)は等しい。結局点Pから\(x\)軸を通って点\(\left( 7,1 \right) \)へ移る場合と、点Pから点\(\left( 7,-1 \right) \)に移る場合は同じ場合の数となるみたい。ちょっと分かりにくい問題だった。 今日はこれで終わりにする。