Toshikazu Sunada (Written by)
Zuken Publishing Co., Ltd. (Publishing House)
2003April 1, 2016 (Release date)
Hardcover (Format)
Good、I'm going to start this collection of questions today~。
Let's start with Chapter 1, "Equations and Inequalities"。
Question 1、It is said that it is a problem of Doshisha Women's University。
This is just a matter of expanding the expression。
It's a hassle to calculate.。
\({ x }^{ 5 }\)の係数は\(-19\)、\({ x }^{ 3 }\)の係数は\(-23\)だろう。
ほい、正解~。
According to the commentary、全部を展開しなくてもその次数の項にだけ注目すればいいみたい、I see。
次は第2問。
同志社大の問題だ。
(1)は条件式から
$$xyz=3\left( xy+yz+xz \right)\tag{1} $$
となり、あとは普通に与えられた式を展開して(1)式を代入すれば、都合よく\(\left( xy+yz+xz \right)\)section disappears and the answer comes out。
(2)According to the hint、
$${ x }^{ 3 }+{ y }^{ 3 }+{ z }^{ 3 }-3xyz=\left( x+y+z \right) \left( { x }^{ 2 }+{ y }^{ 2 }+{ z }^{ 2 }-xy-yz-zx \right) $$
It seems to use the formula that。
If we transform this equation into、
$${ x }^{ 3 }+{ y }^{ 3 }+{ z }^{ 3 }={ \left( x+y+z \right) }^{ 3 }-3\left( x+y+z \right) \left( xy+yz+zx \right) +3xyz $$
このようになって、The rest(1)と同様に式を代入すれば\({ x }^{ 3 }+{ y }^{ 3 }+{ z }^{ 3 }\)が求まる。
最後は問3。
(1)が県立広島女子大、(2)が旭川大の問題だという。
これもヒントを見る。
And then、\({ x }^{ n }+\frac { 1 }{ { x }^{ n } } \)(\(n\)は自然数)The \({ x }+\frac { 1 }{ { x } } \)で表されるという。
(1)The
$${ x }^{ 2 }+5x+1=0\tag{1} $$
But、\(x=0 \)のときこの式は成り立たないので\(x\neq 0 \)They are。
Therefore、(1)式を\(x \)で割ることができる。
あとはヒントどおり変形して計算すればいい。
(2)The \(1<x<2 \)という条件に注意して、与えられた式から\(\left( x+\frac { 1 }{ x } \right) \)And\(\left( x-\frac { 1 }{ x } \right) \)を求める。
And(エ)-(カ)式を変形して計算すればいいな。
今日はここまで。
今回は簡単だった。
Related Posts
- Chart Type Mathematics 1 Part11 [Secondary Function Edition] Toshikazu Sunada (Written by)Zuken Publishing Co., Ltd. (Publishing House)2003April 1, 2016 (Release date)Hardcover (Format) 今回も解いていく。今日は問33からだ。絶対値がたくさんついている。僕はヒントに従って、\(N=2\)のときと\(N=3\)のときを計算してみて、あとは\(N\)が偶数と奇数の場合に分けて、なんとなく答えを出した。However,、正答を見てみると、以下のように回答していた。 $${ a }_{ k }\le x\le { a }_{ k+1 }\quad \left( k=1,2,\cdot \cdot \cdot \cdot \cdot \cdot ,N-1 \right) のとき$$ $$f\left( x \right) =\left( -N+2k \right) x-{ a }_{ 1 }-{ a }_{ 2 }-\cdot \cdot \cdot \cdot \cdot \cdot -{ a }_{ k }+{ a }_{ k+1 }+\cdot \cdot \cdot \cdot \cdot \cdot +{ a }_{ N }$$ あとは\(N\)が偶数の場合と奇数の場合で、\(-N+2k\)が正か負か0かに着目してグラフの形を考えてみれば解けるみたい。こうやってしっかり解かないといけなかったみたいだ。数学2の単調増加、単調減少の考え方も入っているのかな。 次は問34。(1)はまず、2次方程式が異なる実数の2解を持つように判別式\(D>0\)とすればいい。そして共通解を\(x=\alpha \)And so on and so on、2本の2次方程式に代入して計算すると、\({ \alpha }^{ 2 }\)の項がうまい具合に消えて、\(\alpha=1\)と分かる。これで\(a\)の範囲が求められる。(2)は\(f\left( x \right) ={ x }^{ 2 }+ax+4\)、\(g\left( x \right) ={ x }^{ 2 }+4x+\alpha \)And so on and so on、グラフを書いてみる。あとは\(f\left( x \right)\)と\(g\left( x \right)\)が\(x=1\)で交わることに注意してグラフから実数解の大小を考えればいいだろう。 そして問35。\(x\)と\(p\)で表される放物線と三角形が交わるような実数\(p\)の範囲を求めよという問題だ。僕はまずヒントにしたがって放物線が三角形の各頂点を通るときの\(p\)を求めた。あとは\(f\left( x \right) ={ \left( x-p…
- Chart Formula Mathematics 1 Part10 [Secondary Function Edition] Toshikazu Sunada (Written by)Zuken Publishing Co., Ltd. (Publishing House)2003April 1, 2016 (Release date)Hardcover (Format) 今日も2次関数のB問題を進めていこう。問30からだ。(1)は普通に場合分けをして絶対値を外せばいい。(2)がこの問題のポイントとなるところだろう。【1】\(x\ge a\)のとき、\(a\ge \frac { 1 }{ 2 } \)の場合と\(a<\frac { 1 }{ 2 } \)の場合で最小値\(m\left( a \right) \)が異なるので、場合分けする。同様に【2】\(x<a\)のときは、\(a>-\frac { 1 }{ 2 } \)の場合と\(a\le -\frac { 1 }{ 2 } \)の場合で場合分けが必要だ。そしたら\(a\ge \frac { 1 }{ 2 } \)、\(-\frac { 1 }{ 2 } <a<\frac { 1 }{ 2 } \)、\(a\le -\frac { 1 }{ 2 } \)の場合で【1】と【2】のそれぞれの差をとってどちらがより小さいかを明らかにし、関数\(f\left( x \right) \)の最小値\(m\left( a \right) \)を求めることになる。僕はグラフを見てなんとなく直感で解いたが、それではダメだったんだな。しっかり場合分けが必要みたいだ。(3)The (2)がちゃんと解けていれば簡単だ。 次は問31。First(1)。今\(a\)、\(b\)、\(x\)、\(y\)全てが正の実数なので、以下の不等式 $$\frac { x }{ a } \le \frac { y }{ B } $$ の両辺に\(ab\)をかけたり、2乗したりしても、不等号の向きは変わらないし、通常は2乗することで生じる余計な解が含まれることもない。あとは条件式を利用して\({ y }^{ 2 }\)を消去すればいい。(2)The (1)から\(0\le x\le \frac { a }{ \sqrt { { a }^{…
- Chart Formula Mathematics 1 part2 [Equations and Inequality] Toshikazu Sunada (Written by) Zuken Publishing Co., Ltd. (Publishing House) 2003April 1, 2016 (Release date) Hardcover (Format) 今日も進めていきます。 今回は問4からだ。 式を因数分解せよということで(1)-(10)まで式が10題並んでいる。 面倒だが計算するか。 (6)、(9)では以下の公式を使った。 $${ \left( a+b \right) }^{ 3 }={ a }^{ 3 }+3{ a }^{ 2 }b+3a{ B }^{ 2 }+{ B }^{ 3 }$$ $${ \left( a-b \right) }^{ 3 }={ a }^{ 3 }-3{ a }^{ 2 }b+3a{ B }^{ 2 }-{ B }^{ 3 }$$ $${ a }^{ 3 }+{ B }^{ 3 }=\left( a+b \right) \left( { a }^{ 2 }-ab+{ B }^{ 2 } \right) $$ $${ a }^{ 3 }-{ B }^{ 3 }=\left( a-b \right) \left( { a }^{ 2…