チャート式 数学1 part7【2次関数編】
今日も2次関数の総合演習を解いていこう。
問21からだ。
これは2つの絶対値に気をつけて場合分けして\(g\left( x \right) \)をグラフに図示する。
そして\(0<c<1\)のとき\(g\left( x \right) =c\)を満たす\(x\)を求めればいい。
次は問22。
(1)は2本の方程式を連立させて、\(x\)の2次方程式が判別式\(D=0\)となるとき、\({ C }_{ 1 }\)、\({ C }_{ 2 }\)がただ1つの共有点をもつ。
(2)も点\(P\)を通る直線が\({ C }_{ 1 }\)、\({ C }_{ 2 }\)と接するので、連立させて判別式\(D=0\)から求めればいい。
そして問23。
(1)、(2)は普通に解けばいいだろう。
(3)は解の公式から求められた2解の差が\(2\)であればいい。
\(D>0\)に気をつけて計算すれば\(p\)、\(q\)が求められて頂点の座標が求まる。
今日はこれで終わり~。